

GDS850A Glow Discharge Spectrometer

Glow Discharge Spectrometer

LECO Glow Discharge Atomic Emission Spectrometers (GD-AES) are the clear choice of leading companies around the world, providing the most accurate bulk analysis, as well as quantitative depth profiling for a wide variety of sample matrices and applications.

Delivering customers a true turn-key solution, the GDS850 is configured and calibrated at the factory, in order to provide a custom analytical tool optimized to your sample matrices. Due to the robust nature of the system, samples can be analyzed immediately after installation. Only LECO provides this level of customization and customer support.

Using the latest technology in hardware and software, the GDS850A is designed to enhance the performance of both process control and R&D applications. This instrument covers a wide spectral range (120 to 800 nm) and allows for custom configurations of up to 58 channels. Compared with spark sources, GD-AES employs a non-thermal glow discharge source for atomic excitation. Excitation of the atoms occurs in the glow discharge plasma discretely apart from the sample surface thereby reducing the metallurgical and chemical history inherent in all samples. Emission of ion wavelength spectra is almost completely eliminated thereby giving rise to less complex spectra typical of thermal excitation sources.

This unique method of excitation results in true bulk analysis providing a distinct advantage in accurately identifying chemical compositions, especially of difficult materials, over other excitation methods.

GDS advantages over other analytical techniques

- Separation of sputtering and excitation
- Linear calibration curves with wide dynamic range
- Less self absorption and no material re-deposition
- Atomic emission consists primarily of ground state atom lines, resulting in fewer lines and reduced interferences
- Freedom from metallurgical and chemical history
- Fewer standards required for calibration
- Minimal memory effects for a quick matrix change
- Low Argon gas consumption
- Automatic cleaning between samples

Accurate Bulk Analysis

Ideal for foundries, die casters, smelters, and all ferrous/nonferrous applications.

10.1	t an blind art an	-	ter pois		_		_		_						23
10	# 11 • XE (7 >	NO.	11 11 1	NIT T			-				-				
-	Name	Percu	SIG	1000-0114	Prov	10.04	19 CM	NUG	a sert m	A WOW	Man (%)	Cutru	TITLE	ALL	21-
24	@ WST11791	49.6	0.894	8,711	6.638	4.833	4.180	2.00	4,735	8.0510	8,183	4.564	4.162	8.054	-
52	·	88.6	1.048	8.714	8.829	6.834	8.185	2.81	8,236	8.8512	0.183	8.365	0.128	8.854	
11		86.3	1.80	0.710	8.434	4.674	8.179	2.83	8,234	8.2011	8.182	8.367	0.186	8.655	
34.7	· PERTIT/82	MAT	8.538	1.00		8.825	8.564	1.18	8.818	11100	1.144	11.100	6.863	8.878	
28	B 100 T11202	94.1	8.221	2.00	0.000	6.625	0.241	1.18	1.040	8.182	0.756	8.121	6.852	8879	
24	B 100710-02		8.351	3.00	4.000	4.824	0.540	.1.12	1.839	1111	0.000	10.001	0.040	4.679	
81	A.745T11763	26.8	10,195	1.88	8.811	4.821	8.621	8.914	34.886	8.388	3,315	8.5426	4.353	8.542	
38	a matri/83	81.8	10,184	1.08	10.011	4.823	3.818	9.018	1.004	8.366	8.347	3.0437	0.394	6.643	
38	#CHEST-1783	95.9	8,185	4.58	4.811	4,423	8,413	8.521	8.506	8.364	4.347	8,8437	4.308	8.843	
42	# MST11784	85.5	8.589	1.23	8,829	4,812	8.8555	9,298	1.48	8.785	8.188	8.511	4.828	4,008	
41	# PEST11794	45.5	9,591	1,23	8.020	0.813	0.0034	0.208	1.88	8.985	8,197	9.515	4.029	4.000	
42	A 001111784	85.5	2.584	1.38	8.030	6.812	8.0157	6.788	1.48	8.165	8.187	8.518	4.838	8.008	
0	# EUD/0113-12	1.26	2.01	8.003				8,728						8.572	
**	# 009#MI3-12	130	3,03	0.308				6.729	-					4.374	
45	# BUBUN13-12	1.27	2.84	8.368				8.736		L /			1.00	8.581	
**	8 000/0914-20			1	8.029	0.004	0.788		1.58	8.0710	0.0120	0.0881	0.012		
47	8 0084914-00				8.648	4.884	0.199		1.58	4.8711	8.8126	4,0485	4.812		
43	8 8083914-20	-			8.645	6.854	8.199		1.58	8.8713	8.8128	4.0687	4.412		
**	# PERTISIPAT	48.4	1.21	8.867	8.841	9.433	8.189	1.68	8.229	8.0488	8.0804	6.282	6.759	8.694	
M.	# MRTISPES	85.8	1.83	3.664	8.841	4.833	A.180	1.88	#.228	2.5488	8.8853	3.254	0.178	8.053	
88	\$ PERTISTES	85.8	1.82	6,885	0.081	4,633	6.178	2.98	8,229	0.0499	8,8952	8,294	0.174	8,054	
82	BOWST11782	84.1	0.328	2.92	0.033	4.827	0.342	1.18	8,919	8.185	8,339	0,110	0.094	4.671	
88	#UWRTITIES	184.1	3,314	2.89	8,834	4.837	8.342	4.48	8.010	8.188	8,341	3.118	0.3944	8.871	
	8 788711762	194,1	10.329	2.84	8.004	4.82/	18.343	1,13	3.817	8.765	8.338	4.118	0.094	3.871	
55	#D#8715783	95.8	3,187	1.80	4.813	4.821	4.439	8.514	0.517	4.364	0.488	38,8488	4.291	4.643	
58	· WST15763	95.8	18,967	1.88	8,812	4.821	8.627	5.518	8.551	8.364	3,488	8.5419	1.295	8.643	
87	\$ PEST (1782	95.4	9,197	1.89	9,912	4,821	8,628	6,521	-8.504	8,394	9.485	9,0407	4.247	4,862	
56	# MST/1784	85.5	8.576	1.71	8.020	8.811	8.0541	8.785	1.45	8.107	8.185	8.568	8.438	8.008	
£1	and the second second	-	-	-		-		-					-		:10
Blat .	Pe CU	CT (14		No (52	10	1	\$09.	(HCH)		NO (N)	(013)	04	(VOV		86.
AVD	84.1	8.331		187	8.83	8	8.829	8.343		5.58	8.92		8.188		8."
RTD.	8.00768	#.56051	16 J	11036.4	4,80	ē	8.008	8.0013	24	0.00074	0.00	1843	8,0005	45	9.6
850	16.668	8.162		6.158	1.34	2	8.908	8.562		6.485	6.09		8.368		8.i.,
	and the second se		_		2011		1/201		_	1.14.4	10.00	_	Section 1	_	21
-													-		

Multiple sample presentation of bulk data using the GDS850A Glow Discharge spectrometer displaying all samples analyzed in a simple organized spreadsheet.

1.1.1.1	11110		Ind Louis			mab	100103	1.12.5.		10.04	
	NUT	118782				- 6	Type: O	HECK			
and Mean	DR. CORP	Cerel allow	1.0.0	10000	-	115 1.2	Date: 4	24209 18.3	E 49		
nanynen	AVU	Cantinana	Column	Deservice	Box Error	Barn 1	Sec. 1	Burn A			
TH O	100	A. 10.	Sec.	alarri .		24.5	100	24.1			
104	1.111	8.334	5.00 C	A DOLLAR	100	2.00	221	1.111			
-134 ·	2.00				1.764		222.1	2.00			
194	0.011	1.000	4.915	0.000	4.383	0.033	4944	0.013			
24	2343	1.141	A 144	4.84573	1.744	200		2.22			
CNI	200		200			200	200	1.11			
COM.						Sec.	22.	100			
2104	2.20		214			200	2011	200			
Col.	100	4.745	100	a same	2 4 4 4	2.00	0.00				
1100	200	A. 110	200	a ministra	4.321	8.126	200	A 111			
	2483	2.845	2444	4.843	2.454	1.445	2.882				
100		222	1000		1111	1000	222	1000			
ecse .	and the second	and a			1000	110.	and bed	10.744			
	100			200			1147	10.04			
1000				# 144				44.444			
1000											
	141										

Single sample screen of a certified check standard can be easily monitored for elements of interest and accuracy.

Calibration Screen

Use the Windows[®]-based toolbars and drop-down menus to select a variety of analytical procedures. Simply select a method, choose the samples and standards to be analyzed, and start.

The software allows sampling rates of up to 2000 data points-per-second regardless of the number of channels selected. Results from ppm levels can be viewed on a large color monitor.

Quantitative Depth Profiling (QDP) Solutions

QDP is an ideal method for early identification of potential problems with your materials (including coatings, layers, and thermochemical treatments). Why use GDS? The GDS technique can perform a depth profile analysis continuously from nanometers to hundreds of micrometers. Combined with a fast sputtering rate ($0.5 \mu m$ to $30 \mu m/min.$), GDS provides the complete chemical composition (ppm to 100%) from the surface to the substrate in only a few minutes. All elements are acquired simultaneously, increasing sample throughput while minimizing cost-per-analysis.

QDP Applications

Your instrument will be fully calibrated for your specific application upon delivery.

- Galvanizing (EG, Hot Dip, Galvalume, Galvanneal, Galfan, Zinc-Nickel)
- Plating (Sn, Cr, Cd, Ni, Cu)
- Thermochemical treatments (Carburizing, Nitriding, Carbonitriding)
- Hard coatings made by PVD/CVD
- Clad (Aluminum)

QDP Quickly Identifies

- Contamination and cleanliness at the surface and interfaces
- Migration and diffusion at interfaces
- Heterogeneity of coating/substrate
- Adherence issues

- Oxide layers
- Organic coatings
- Semiconductors
- Glass/Ceramics
- Oxidation/corrosion
- Inclusion/blister
- Chemical composition
- Layer thickness/coating weight

Thin Alternating Multi-Layers

LECO offers you the ultimate Glow Discharge Spectrometer capable of quantifying thin alternating multi-layers.

Quantitative Depth Profiling (QDP) Solutions Meeting production, process, and research requirements.

Three replicate QDPs of the surface of a hard disk exhibiting seven resolved layers at a depth of 100 nanometers.

of painted steel sheet showing three different organic layers—topcoat paint and primer—on the galvanization (Zn).

QDP analysis of organic coatings. **QDP**

QDP of the corrosion-resistant electrogalvanized Zn/Ni coating on the surface of sheet steel, showing coating thickness, weight, and alloy composition.

Name	Zn Depth, µm	Coating Wt, g/m ²	Zn%	Ni%
Zn-Ni 1	2.72	19.93	87.36	12.61

QDP analysis of multilayer sample, including conductive and non-conductive layers. Example of TiN, TiCN, Al₂O₃, TiN, and TiCN on cemented carbide. Display of Atomic % vs. Depth for stoichiometry check.