附件 3

食用油脂中脂肪酸的综合检测法 BJS 201712

1 范围

本方法适用于食用植物油(花生油、大豆油、玉米油、植物调和油、橄榄油、葵花籽油、芥花油、菜籽油、香油、棕榈油等)是否存在异常的检测及识别。

2 方法原理

将样品甲酯化,采用气相色谱-串联质谱内标法定量测定13种脂肪酸甲酯含量,再根据脂肪酸 甲酯含量判定油脂是否存在异常,对异常样品进一步排查确认。

3 试剂和材料

除另有规定外,本方法所用试剂均为分析纯,水为GB/T 6682规定的一级水。

3.1 试剂

- 3.1.1 正己烷 (C₆H₁₄): 色谱纯。
- 3.1.2 甲醇(CH₃OH):色谱纯。
- 3.1.3 无水硫酸钠(Na₂SO₄): 分析纯。
- 3.1.4 氢氧化钠 (NaOH): 分析纯。
- 3.1.5 三氟化硼甲醇溶液: 50%。

3.2 溶液配制

- 3.2.1 含2%氢氧化钠的甲醇溶液:准确称取2 g氢氧化钠(3.1.4)于烧杯中,加入甲醇(3.1.2),超声至氢氧化钠完全溶解,移入 $100~\mathrm{mL}$ 容量瓶中,用甲醇定容至刻度。
- 3.2.2 15%的三氟化硼甲醇溶液: 取 50%三氟化硼甲醇溶液 (3.1.5) 30 mL,缓慢加入到装有 70 mL 甲醇 (3.1.2) 的烧杯中,用玻璃棒搅拌均匀。

3.3 标准物质

- 3.3.1 十一碳酸甘油三酯 (C₃₆ H₆₈O₆, CAS: 13552-80-2) 标准品, 纯度>98%。
- 3.3.2 十一碳酸甲酯(C₁₂H₂₄O₂, CAS: 1731-86-8)标准品,纯度>99%。
- 3.3.3 37 种脂肪酸甲酯混合标准溶液标准品,各组分浓度参考附录 A。

3.4 标准溶液配制

3.4.1 十一碳酸甘油三酯内标溶液 (1000 mg/L)

称取 0.10 g(精确至 0.0001 g)十一碳酸甘油三酯,加入 50 mL 甲醇溶解,移入 100 mL 容量瓶中,以甲醇定容,制成储备液。储备液于-20 ℃可冷藏保存三个月。使用时以甲醇稀释成 50 mg/L 的中间液,现用现配。

3.4.2 十一碳酸甲酯内标溶液(1000 mg/L)

称取 0.10 g (精确至 0.0001 g) 十一碳酸甲酯,加入 50 mL 正己烷溶解,移入 100 mL 容量瓶

中,以正己烷定容,制成储备液。储备液于-20℃可冷藏保存三个月。使用时以正己烷稀释成 50 mg/L 的中间液,现用现配。

3.4.3 37种脂肪酸甲酯标准溶液

将脂肪酸甲酯混合标准溶液从安瓿瓶中完全转移至 10 mL 容量瓶中,用正己烷定容,于-20 ℃冷藏可保存一周。

根据需要稀释成适当浓度的含 5.00 mg/L 十一碳酸甲酯内标的标准工作溶液,现用现配。

4 仪器与设备

- 4.1 气相色谱-质谱联用仪(GC/MS)。
- 4.2 恒温水浴: (40 ℃~100 ℃) ±1 ℃。
- 4.3 分析天平: 感量 0.1 mg。
- 4.4 涡旋振荡器。
- 4.5 烘箱。

5 分析步骤

5.1 样品前处理

称取样品 0.1 g (精确至 0.1 mg)于 250 mL 烧瓶中,加入 50 mg/L 十一碳酸甘油三酯内标 1mL (相当于 50 μg) ,加入含 2%氢氧化钠的甲醇溶液 (3.2.1)8 mL,混合摇匀,连接回流冷凝器并在 80 ℃水浴上回流,直至油滴消失;从回流冷凝器上端加入 15%三氟化硼甲醇溶液 (3.2.2)7 mL,继续回流 2 min;用去离子水冲洗回流冷凝器,继续加热 1 min;从水浴上取下烧瓶,迅速冷却至室温,准确加入 10 mL 正己烷,振摇 2 min,吸取上层正己烷相,使其通过无水硫酸钠吸水后,过 0.22 μm 的有机相滤膜,待 GC/MS 检测。

5.2 仪器条件

- a.色谱柱: 毛细管色谱柱 (DB-23, 60 m×0.25 mm×0.25 μm), 或性能相当者。
- b.载气: 高纯氦气。
- c.载气流量: 1.0 mL/min。
- d.进样口温度: 270℃。
- e.程序升温:初始温度 60 ℃持续 3.0 min;
 - 60 ℃~160 ℃, 升温速率 15 ℃/min; 保持 0 min;
 - 160 ℃~210 ℃, 升温速率 8 ℃/min; 保持 0 min;
 - 210 ℃~230 ℃, 升温速率 3.15 ℃/min; 保持 10 min。
- f.进样方式:分流进样,分流比5:1。
- g.进样体积: 1.0 μL。
- h.离子源: EI, 70 eV。
- i.离子源温度: 230 ℃。
- j.四极杆温度: 150 °C。
- k.接口温度: 270 ℃。
- 1.定量分析为选择离子扫描(SIM),14种脂肪酸甲酯的保留时间、定性及定量离子见表1。

序号 脂肪酸甲酯 定量离子(m/z) 定性离子(m/z) 保留时间(min) 74 87、99、59 C6:0 8.34 2 C8:0 74 87、127、59 10.44 C10:0 74 87、143 12.23 3 C11:0(内标) 87、200、143 74 13.08 4 5 C12:0 74 87、143、183 13.94 6 C13:0 74 87、143、185 14.79 87、143、199 7 74 C14:0 15.66 8 C14:1n5 74 87、166、208 16.06 9 87、143、213 C15:0 74 16.53 74 87、194、236 17.81 10 C16:1n7 87、143、284 11 C17:0 74 18.42

表 1 14 种脂肪酸甲酯的保留时间、定性离子和定量离子

5.3 结果计算

12

13

14

按下式(1)计算样品中脂肪酸的含量(以脂肪酸甲酯计):

$$X = \frac{c \times V}{m} \cdot \dots \cdot (1)$$

20.03

20.79

23.62

81、95、294

67、95

91、67、105

式中:

X-样品中脂肪酸的含量(以脂肪酸甲酯计),单位为毫克每千克(mg/kg)

67

79

79

c—样品溶液中脂肪酸甲酯的浓度,单位为微克每毫升($\mu g/mL$)

V—样品溶液定容体积,单位为毫升(mL)

C18:2n6t

C20:3n6

C20:4n6

m—样品称取的质量,单位为克(g)

计算结果保留三位有效数字。

6 结果判定

依据脂肪酸甲酯含量判定油脂是否存在异常,判定异常时提示油脂中可能存在反复高温处理 并经高度精炼获得的异常油脂。判定依据见表2。

表2 依据脂肪酸甲酯含量判定油脂是否异常

化合物	判定依据(mg/kg)				
C6:0	x>30,油脂可能存在异常,若确认不是棕榈油(1),可判定为异常油脂样品				
C8:0	x>120,油脂可能存在异常,若排除棕榈油干扰 ⁽⁴⁾ ,且确认不是葵花籽油 ⁽¹⁾ ,可判定为异常				
	油脂样品				
C10:0	x>100,油脂可能存在异常,若排除棕榈油干扰 ⁽²⁾ ,且确认不是芥花油和菜籽油 ⁽¹⁾ ,可判定				
	为异常油脂样品				
C12:0	400>x>130,油脂可能存在异常,若排除棕榈油和菜籽油干扰 ⁽²⁾ ,且确认不是芥花油和香				
	油(1),可判定为异常油脂样品				
	x>400,油脂可能存在异常,若排除棕榈油干扰 ⁽²⁾ ,可判定为异常油脂样品				
C13:0	x>10,可判定为异常油脂样品				
C14:0	x>1200,油脂可能存在异常,若排除棕榈油干扰 ⁽²⁾ ,可判定为异常油脂样品				
C14:1n5	x>10,可判定为异常油脂样品				
C15:0	600>x>240,油脂可能存在异常,若排除棕榈油干扰 ⁽²⁾ ,且确认不是芥花油和菜籽油 ⁽¹⁾ ,				
	可判定为异常油脂样品				
	x>600,油脂可能存在异常,若排除棕榈油干扰 ⁽²⁾ ,可判定为异常油脂样品				
C16:1n7	x>2000, 油脂可能存在异常,若排除芥花油、菜籽油、橄榄油和棕榈油干扰 ⁽¹⁻²⁾ ,可判				
	定为异常油脂样品				
C17:0	x>1800,油脂可能存在异常, 若排除橄榄油干扰 ⁽¹⁾ ,可判定为异常油脂样品				
C18:2n6t	x>800,可判定为异常油脂样品				
C20:3n6	450>x>220,油脂可能存在异常,若排除菜籽油干扰 ⁽²⁾ ,可判定为异常油脂样品				
	x>450,可判定为异常油脂样品				
C20:4n6	120>x>36,油脂可能存在异常,若排除菜籽油干扰 ⁽²⁾ ,可判定为异常油脂样品				
	x>120,可判定为异常油脂样品				

注: (1) 确认不是干扰油的方法: 采用气相色谱法测定样品中 37 种脂肪酸含量,根据 37 种脂肪酸含量分布结合 附录 C 进行确认,检测方法参考 GB 5009.168-2016。

(2) 排除棕榈油、菜籽油干扰的方法:参考表3。

表 3 排除干扰油的方法

化合物	方法说明(mg/kg)			
C8:0	x>(样品中肉豆蔻酸 C14:0的含量×0.04),可排除棕榈油干扰			
C10:0	x>(样品中肉豆蔻酸 C14:0的含量×0.072),可排除棕榈油干扰			
C12:0	$x>$ (样品中肉豆蔻酸 C14:0的含量 \times 1.00),可排除棕榈油干扰 $x>$ (样品中芥酸 C22:1 n 9的含量 \times 0.08),可排除菜籽油干扰			

C15:0	x>(样品中肉豆蔻酸 C14:0的含量×0.12),可排除棕榈油干扰
C20:3n6	x>(样品中芥酸 C22:1n9的含量×0.15),可排除菜籽油干扰
C20:4n6	x>(样品中芥酸 C22:1n9的含量×0.04),可排除菜籽油干扰
C14:0/C12:0比值	x>20,可排除棕榈油干扰

7 质量控制

7.1 方法空白

以十一碳酸甘油三酯为空白,进行脂肪酸过程空白对照。

7.2 质控样品

- 7.2.1 以正常食用植物油(纯大豆油、菜籽油、花生油)做对照,每批样品处理过程均以这三种作为阴性对照。
- 7.2.2 以已确定为"异常油脂"的样品作阳性对照,同时以不同稀释度进行对照。

7.3 质谱仪的质量数校正

采用仪器自动调谐PFTBA进行质量数校正。

附录 A

脂肪酸甲酯混合标准溶液各组分浓度

表A脂肪酸甲酯混合标准溶液各组分浓度

序号	组分中文名称	组分英文名称	CAS No.	简称	纯度	浓度 /(mg/mL)
1	丁酸甲酯	Methyl butyrate	623-42-7	C4:0	99.9	0.402
2	己酸甲酯	Methyl hexanoate	106-70-7	C6:0	99.7	0.399
3	辛酸甲酯	Methyl octanoate	111-11-5	C8:0	99.9	0.399
4	癸酸甲酯	Methyl decanoate (caprate)	110-42-9	C10:0	99.9	0.399
5	十一碳酸甲酯	Methyl undecanoate	1731-86-8	C11:0	99.5	0.199
6	十二碳酸甲酯	Methyl laurate	111-82-0	C12:0	99.8	0.398
7	十三碳酸甲酯	Methyl tridecanoate	1731-88-0	C13:0	99.4	0.199
8	十四碳酸甲酯	Methyl myristate	124-10-7	C14:0	99.7	0.400
9	顺-9-十四碳一烯酸甲酯	Myristoleic acid methyl ester	56219-06-8	C14:1n5	99.9	0.202
10	十五酸甲酯	Methyl pentadecanoate	7132-64-1	C15:0	99.6	0.200

11	顺-10-十五烯酸甲酯	Cis-10-pentadecenoic acid methyl ester	90176-52-6	C15:1n5	99.0	0.197
12	十六碳酸甲酯	Methyl palmitate	112-39-0	C16:0	99.9	0.598
13	顺-9-十六碳一烯酸甲酯	Methyl palmitoleate	1120-25-8	C16:1n7	99.7	0.199
14	十七碳酸甲酯	Methyl heptadecanoate	1731-92-6	C17:0	99.9	0.201
15	顺-10-十一烯酸甲酯	Cis-10-heptadecenoic acid methyl ester	75190-82-8	C17:1n7	99.9	0.200
16	十八碳酸甲酯	Methyl stearate	112-61-8	C18:0	99.9	0.399
17	反-9-十八碳一烯酸甲酯	Trans-9-elaidic methyl ester	1937-62-8	C18:1n9t	96.9	0.194
18	顺-9-十八碳一烯酸甲酯	Cis-9-oleic methyl ester	112-62-9	C18:1n9c	99.9	0.399
19	反,反-9,12-十八碳二烯酸甲酯	Linolelaidic acid methyl ester	2566-97-4	C18:2n6t	99.9	0.200
20	顺,顺-9,12-十八碳二烯酸甲酯	Methyl linoleate	112-63-0	C18:2n6c	99.9	0.200
21	二十碳酸甲酯	Methyl arachidate	1120-28-1	C20:0	99.9	0.401
22	顺,顺,顺-6,9,12-十八碳三烯酸甲酯	GAMMA-linolenic acid methyl ester	16326-32-2	C18:3n6	99.5	0.198
23	顺-11-二十碳一烯酸甲酯	Methyl eicosenoate	2390-09-2	C20:1n9	99.9	0.201
24	顺,顺,顺-9,12,15-十八碳三烯酸甲酯	Alpha-Methyl linolenate	301-00-8	C18:3n3	99.6	0.200

25	二十一碳酸甲酯	Methyl heneicosanoate	6064-90-0	C21:0	99.5	0.201
26	顺,顺-11,14-花生二烯酸甲酯	Cis-11,14-eicosadienoic acid methyl ester	2463-02-7	C20:2n6	99.9	0.199
27	二十二碳酸甲酯	Methyl behenate	929-77-1	C22:0	99.8	0.398
28	顺,顺,顺一8,11,14一花生三烯酸甲酯	Cis-8,11,14-eicosatrienoic acid methyl ester	21061-10-9	C20:3n6	99.1	0.197
29	顺-13-二十二碳一烯酸甲酯	Methyl erucate (cis-13-docosenoic acid methyl ester)	1120-34-9	C22:1n9	99.7	0.199
30	顺-11,14,17-花生三烯酸甲酯	Cis-11,14,17-eicosatrienoic acid methyl ester	55682-88-7	C20:3n3	99.2	0.198
31	顺-5,8,11,14-花生四烯酸甲酯	Methyl cis-5,8,11,14-eicosatet	2566-89-4	C20:4n6	99.3	0.200
32	二十三碳酸甲酯	Methyl tricosanoate	2433-97-8	C23:0	99.9	0.201
33	顺-13,16-二十二碳二烯酸甲酯	Cis-13,16-docosadienoic acid methyl ester	61012-47-3	C22:2n6	99.9	0.200
34	二十四碳酸甲酯	Methyl lignocerate	2442-49-1	C24:0	99.8	0.399
35	顺-5,8,11,14,17-花生五烯酸甲酯	Methyl cis-5,8,11,14,17-eicosatet	2734-47-6	C20:5n3	99.9	0.199
36	顺-15-二十四一烯酸甲酯	Methyl nervonate	2733-88-2	C24:1n9	99.9	0.200
37	顺-4,7,10,13,16,19 -二十二碳六烯酸甲酯	cis-4,7,10,13,16,19-Docosahexaenoic acid methyl ester	2566-90-7	C22:6n3	99.7	0.198

附录 B

各类典型食用植物油及"异常油脂"参考德图

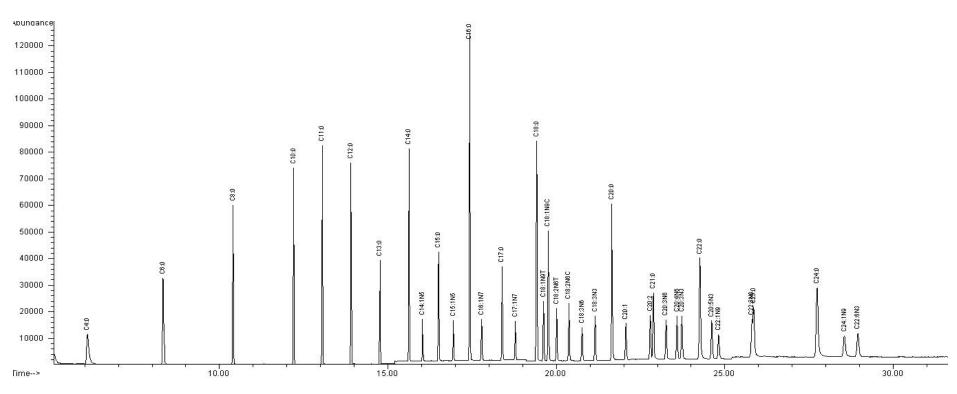
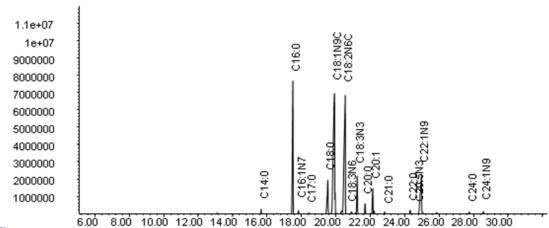



图 B.1 37 种脂肪酸甲酯标准物质 SIM 图

Time-->

图 B.2 典型菜籽油中脂肪酸甲酯 SIM 图

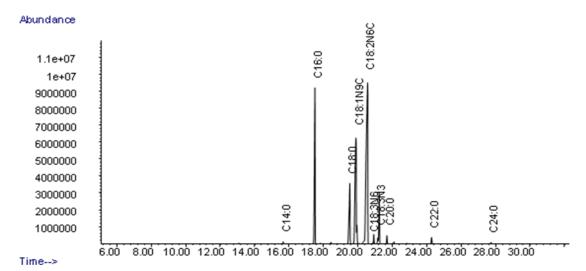


图 B.3 典型大豆油中脂肪酸甲酯 SIM 图

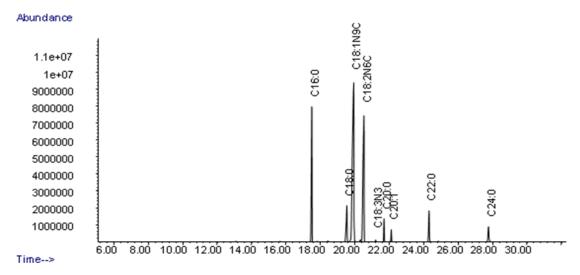


图 B.4 典型花生油中脂肪酸甲酯 SIM 图

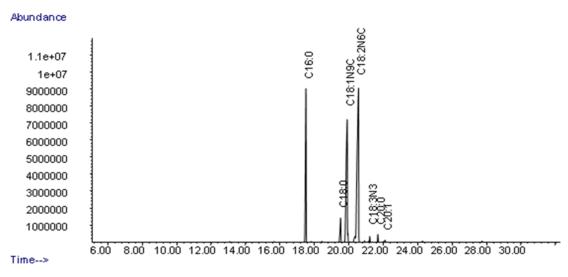


图 B.5 典型玉米油中脂肪酸甲酯 SIM 图

Abundance

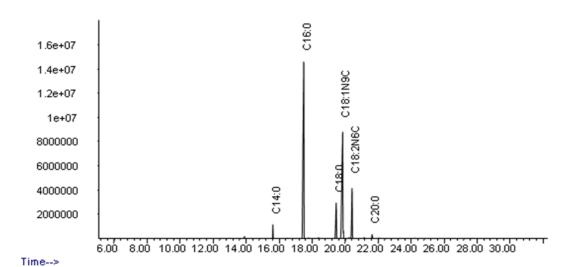


图 B.6 典型棕榈油中脂肪酸甲酯 SIM 图

Abundance

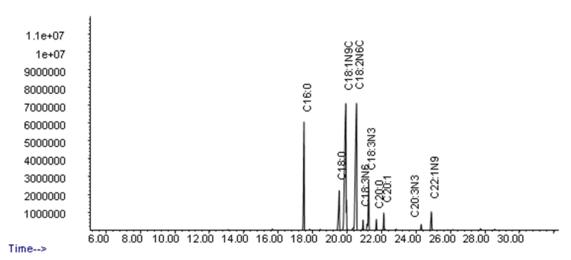


图 B.7 典型植物调和油中脂肪酸甲酯 SIM 图

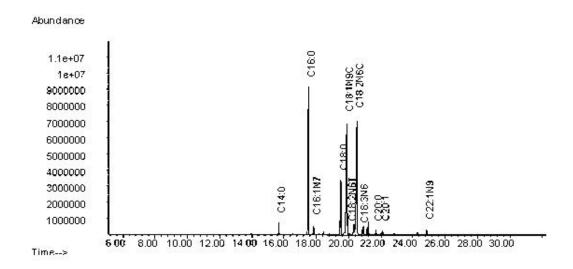


图 B.8 典型"异常油脂"中脂肪酸甲酯 SIM 图

附录 C

棕榈油、菜籽油、茶花油、葵花籽油37种脂肪酸含量分布

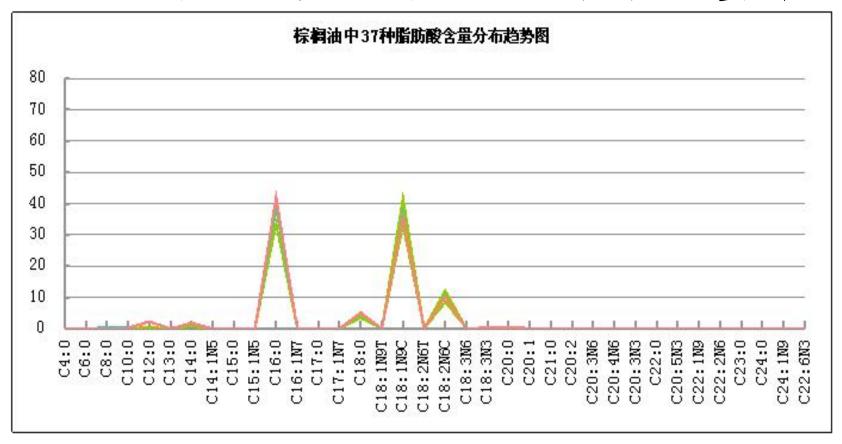


图 C.1 实验室普查 6 个棕榈油样本结果

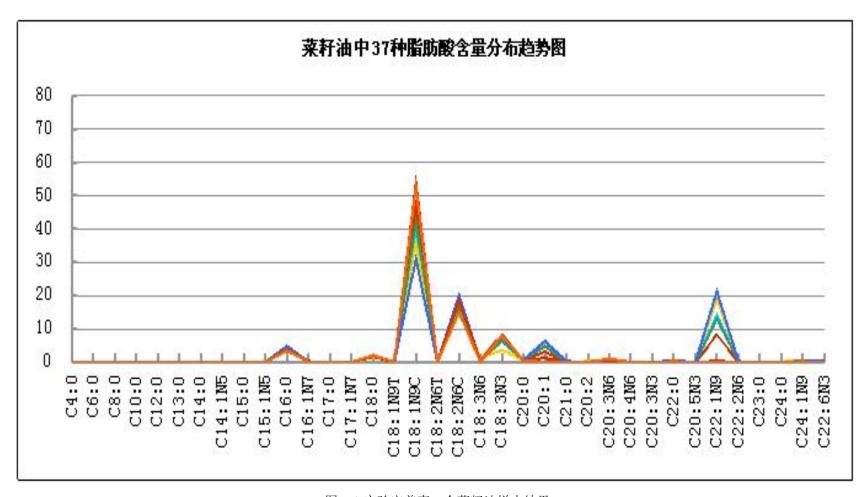


图 C.2 实验室普查 7 个菜籽油样本结果

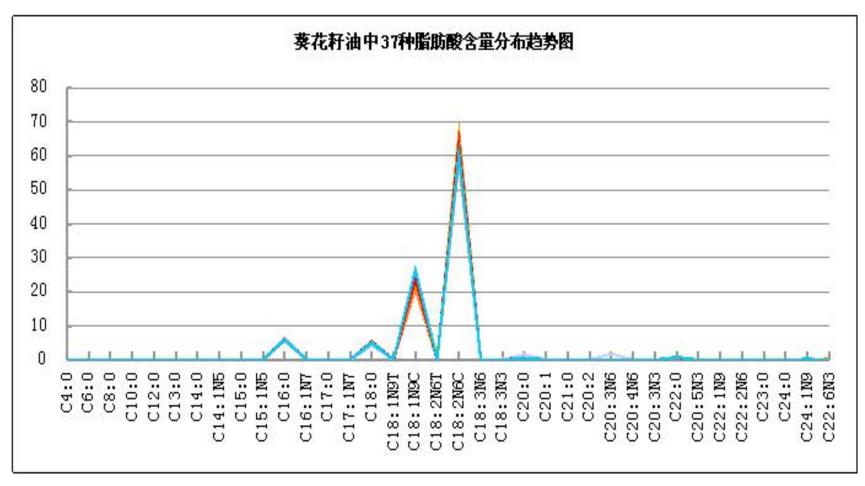


图 C.3 实验室普查 12 个葵花籽油样本结果

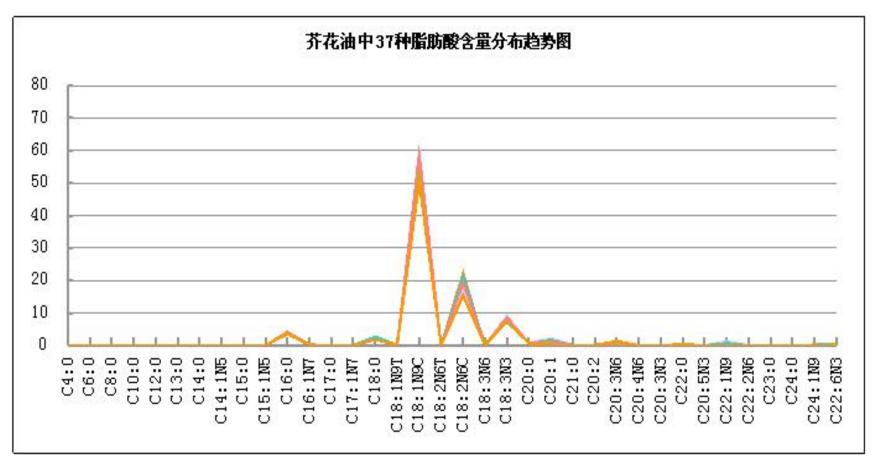


图 C.4 实验室普查 8 个芥花油样本结果

本方法负责起草单位:中国检验检疫科学研究院、浙江九安检测科技有限公司

本方法参与验证单位:中国食品药品检定研究院

主要起草人: 仲维科、李礼、许秀丽、张峰、任荷玲、黄传峰