《农产品中克百威的快速检测方法 胶体金免疫层析法》

编制说明

1. 概况

1.1. 方法起草单位与主要起草人

本方法主要起草单位: 本方法主要起草人:

1.2. 目的和意义

克百威(Carbofuran, CBF, 化学名为 2,3-二氢-2,2-二甲基-7-苯并呋喃基-N-甲基氨基甲酸酯,商品名为呋喃丹,是一种广谱高效的氨基甲酸酯类农药,主要用于农业生产中多种农作物害虫的防治。克百威可以和胆碱酯酶发生不可逆结合,造成乙酰胆碱不能分解而蓄积在体内,影响神经中枢传导,具有神经毒性和胃毒。克百威在酸性土壤中不易降解,残留期长,可被植物根部吸收并输送到植物体的各器官,主要积蓄在植物叶部;也可能通过径流渗透污染地下水源,给食品安全和环境带来潜在威胁。

目前,农业部已禁止将克百威用于蔬菜、果树、茶叶和中草药材的生产种植,但仍有不少违法使用现象时有发生,导致克百威残留在果蔬等产品中。因此,在持续加大使用监管力度和完善监管体系的同时,加强克百威残留检测技术研究十分必要。

2. 与国内外有关法律法规和其它标准的关系

即将实行关于农产品中克百威的最大残留量标准为 GB 2763-2019 食品安全国家标准 食品中农药最大残留限量。该标准规定,在谷物中麦类、旱粮类、杂粮类中克百威最大残留量为 0.05mg/kg,糙米最大残留量为 0.1mg/kg;在油料和油脂中油菜籽最大残留量为 0.05mg/kg,棉籽、葵花籽最大残留限量为 0.1mg/kg,大豆、花生仁最大残留限量为 0.2mg/kg;在蔬菜中鳞茎类、芸薹属类、叶菜类、茄果类、瓜类、豆类、茎类、根茎类、薯芋类、水生类、芽菜类、其他类最大残留量为 0.02mg/kg(马铃薯为 0.1mg/kg);水果中柑橘类、仁果类、核果类、浆果及其他小型水果类、热带及亚热带水果类、瓜果类最大残留量为 0.02mg/kg;调味料中甘蔗、甜菜最大残留量为 0.1mg/kg;饮料中茶叶最大残留量为 0.05mg/kg;调味料中根茎类调味料最大残留量为 0.1mg/kg;哺乳动物肉类(海洋哺

乳动物除外)中猪肉、牛肉、羊肉、马肉最大残留量为 0.02mg/kg; 哺乳动物内脏(海洋哺乳动物除外)中猪内脏、牛内脏、羊内脏、马内脏最大残留限量为 0.05mg/kg; 哺乳动物脂肪中猪脂肪、牛脂肪、羊脂肪、马脂肪最大残留量为 0.05mg/kg。

其检测方法: 谷物、油料和油脂、调味料按照 GB 23200.112 的方法测定; 蔬菜、水果按照 GB 23200.112、NY/T761 规定的方法测定; 糖料参照 GB 23200.112、NY/T761 规定的方法测定; 茶叶按 GB 23200.112 规定的方法测定。以上方法均用液相色谱法完成,该检测方法与本标准的免疫层析法不同。

3. 标准的制定与起草原则

本标准是按 GB/T 1.1-2009《标准化工作导则第 1 部分:标准的结构和编写》给出的规则编写,技术内容是参照 GB/T 20001.4-2015《标准编写规则第 4 部分:试验方法标准》确定。

4. 各项技术内容确定的依据

4.1. 测定步骤与结果判读的确定

4.1.1. 样品的前处理

将农产品样品剪成 1cm²大小, 称取 2g 样品于 50ml 离心管中, 加入 5mL 提取液, 震荡混匀 2min, 手动固液分离后, 液体即为样品提取液。

4.1.2. 样品分析步骤的确定

参照国家食药总局已发布的 9 项基于胶体金免疫层析原理的快速检测方法 (KJ201701-KJ201703、KJ201705-KJ201710、KJ201801)的分析步骤进行分析。

4.1.3. 结果判断方法的确定

参照国家食药总局已发布的 9 项基于胶体金免疫层析原理的快速检测方法

(KJ201701-KJ201703、KJ201705-KJ201710、KJ201801)的结果判断。

4.2. 方法性能的确定

我国标准 GB 2763-2016 食品安全国家标准 食品中农药最大残留限量中规定蔬菜中克百威含量不得超过 0.02 mg/kg 因此本方法的检测性能(定性限)设定为 0.02mg/kg。

4.2.1. 方法性能确定实验用到的检测卡

生产单位:广州万联生物科技有限公司

检测卡名称:农产品克百威胶体金免疫层析检测卡,

检测卡批号: WLKBW191028、WLKBW191115、WLKBW191203、WLKBW191218

检测药物: 克百威

检出限: 0.02mg/kg

4.2.2. 方法性能确定实验用到的样品

空白样品: 经仪器方法确认,克百威含量<4ppb 的样品。

本标准中涉及两大类样品——蔬菜、水果。每大类样品选取 15 个样品。

选取的 15 个蔬菜样品为: 豇豆、菜豆、芹菜(根芹菜)、韭菜、菠菜、生菜、芥菜、油麦菜、蕹菜、菜薹(菜心)、黄花菜、黄瓜、辣椒、茄子、生姜

选取的 15 个水果样品为: 柑橘、苹果、梨、油桃、草莓、西瓜、香蕉、猕猴桃、哈密瓜、圣女果、葡萄、橙子、车厘子、蓝莓、番石榴。

4.3.3. 方法性能确定实验中用到的标准品

农药克百威溶液标准物质, 用甲醇稀释。

标准品:克百威(Carbofuran in Methanol)

品牌及编号:农业部环境质量监督检验测试中心(天津),产品编号 GBW(E)081312 浓度: 1000mg/L(甲醇)

4.3.4. 方法性能确定实验方案

4.3.4.1. 样品本底的测定

采集的样品根据 GB 23200.112、NY/T761——液相色谱法确定本底值,选取本底值 低于 0.004 mg/kg 样品作为空白样品用于方法验证实验。

4.3.4.2. 灵敏度和假阴性率的计算

由于 GB 2763-2019 中规定农产品中克百威的限量为 0.02mg/kg(按最低限量),因此设定 0.02 mg/kg 为方法检出限,即关注浓度。添加水平为 1 倍关注浓度、2 倍关注浓度,考察灵敏度和假阴性率,计算方法见附表 1。

4.3.4.3. 特异性和假阳性的计算

选取 20 个空白样品,以及 20 个添加水平为 0.2 倍关注浓度样品,考察特异性和假阳性率。计算方法见附表 1。

4.3.4.2. 与参比方法一致性分析

选取 10 个新鲜农产样品进行方法比对,参比方法为 GB 23200.112、NY/T761: 液相色谱法。

4.4. 方法性能验证结果

4.4.1 灵敏度和假阴性率

检测对象	添加浓度	检测结果	灵敏度	假阴性率	总体灵敏度	总体假阴性
	(mg/kg)		(%)	(%)	(%)	率(%)
蔬菜	0.02	0(-), 20(+)	100	0	- 100	0
	0.04	0(-), 20(+)				
水果	0.02	0(-), 20(+)	100	0		
	0.04	0(-), 20(+)				

4.4.2 特异性和假阳性

检测对象	添加浓度	检测结果	特异性	假阳性率	总体灵敏度	
	(mg/kg)		(%)	(%)	(%)	率(%)
蔬菜	0	0(+), 20(-)	100	0	- 100	0
	0.004	0(+), 20(-)				
水果	0	0(+), 20(-)	100	0		
	0.004	0(+), 20(-)				

4.4.3 与参比方法一致性

样品	GB 5009.208-2016 第一法结果 (mg/kg)	本方法结果	
生菜	0.002	阴性	
油麦菜	0.004	阴性	
菠菜	0.0035	阴性	
黄瓜	0.001	阴性	
芹菜	0.001	阴性	
柑橘	0.0035	阴性	
油桃	0.004	阴性	
豇豆	0.0037	阴性	
四季豆	0.01	阳性	
辣椒	0.0028	阴性	

4.5. 方法性能验证结论

本研究采用胶体金免疫层析方法对农产品中的克百威进行检测。检测结果表明检出限设定为 0.02mg/kg 时,该方法灵敏度≥99%,特异性≥99%,假阴性率≤1%,假阳性率≤1%。经过方法验证表明,该克百威试纸条具有很好的灵敏度与特异性,其产品假阴性、假阳性率均≤1%。

快速检测方法性能指标计算表

表 A.1 性能指标计算方法

样品情况。	检测结果b		总数		
7千 HI I I I ひし	阳性	阴性	心奴		
阳性	N11	N12	N1.=N11+N12		
阴性	N21	N22	N2.=N21+N22		
总数	N.1=N11+N12	N.2=N21+N22	N=N1.+N2.或 N.1+N.2		
显著性差异(X²)	$X2=(N12-N21 -1)^2/(N12+N21),$				
业有以左升(X)	自由度 (df) =1				
灵敏度(p+, %)	p+=N11/N1.				
特异性 (p-, %)	p-=N22/N2.				
假阴性率 (pf-, %)	pf-=N12/N1.=100-灵敏度				
假阳性率 (pf+, %)	pf+=N21/N2.=100-特异性				
相对准确度, %°	(N11+N22)/(N1.+N2.)				

å由参比方法检验得到的结果或者样品中实际的公议值结果;

b由待确认方法检验得到的结果。灵敏度的计算使用确认后的结果。

N任何特定单元的结果数,第一个下标指行,第二个下标指列。例如: N11表示第一行,第一列, N1.表示

所有的第一行, N.2表示所有的第二列; N12表示第一行, 第二列。