目 录

一、概述	(1)
1.1 仪器的外形	(1)
1.2 适用标准	(1)
1.3 主要功能及特点	(2)
二、技术指标	(2)
三、工作原理	(3)
四、仪器的安装······	(4)
4.1 配件检查	••••(4)
4.2 仪器的安装	••••(5)
1、位置要求 · · · · · · · · · · · · · · · · · · ·	(5)
2、仪器的安装••••••	(5)
五、仪器的操作	(7)
5.1显示说明	(7)
5.2 按键说明	(7)
5.3 功能菜单及设置	(8)
1、排污	(8)
2、存储	(9)
3、计时器	(9)

4、空白校准(10)
5、打印(11)
6、菜单(11)
六、仪器校准(15)
6.1 仪器的校准(15)
6.2 本底功能说明(18)
6.3 水样的测量	20)
七、注意事项()	20)
八、仪器常见故障判别与处理(22)
九、溶液的制备	23)
9.1 显色试剂的配制()	23)
9.2 待测水样的显色	24)
9.3 倒加药的配制	24)
9.4 校准液的配制	24)
9.5 硅储备溶液的配制()	25)

概述

该仪器是我公司生产的实验室光电比色类分析仪器之一,主要 用于水中可溶性二氧化硅和硅酸盐含量的分析、检测,仪器采用PVC 壳体,坚固防水。

显示屏采用高分辨率的彩色480×272点阵液晶显示模块。所有数据、界面和操作提示都是中文显示,具有易于理解,便于操作等特点;并可根据需要保存当前的测量值。

1.1 仪器的外形

仪器的外形见下图 1-1。仪器由主机、电源线、排污管、进样 杯及进样杯支架组成。

图 1-1

1

1.2 适用标准

引用国标 GB/T 12149-2007《工业循环冷却水和锅炉用水中硅

的测定》。

1.3 主要功能及特点

(1) 仪器采用进口单色冷光源,性能优良、信号稳定、功耗低、使用寿命长。

(2) 测量数据为直读式。

(3) 简洁的全中文提示菜单,便于理解,易于操作。

(4)在测量界面下按存储键(可存储 256 条数据),仪器自动 存储测量界面下的硅浓度值和时间,方便用户查看。

(5)显示当前的时间,为记录功能提供时间基准。

(6)为保证测量数据的准确、可靠。仪器设有独特的加药计时 功能、空白校准功能和本底补偿功能。

注: 1. 进行仪器操作之前, 必须详细阅读本产品说明书。

2.本说明书图片中的所有数值均为举例示值,不可作为参考数据。

3. 如使用说明书与实际操作有差异时以仪器为准。

二 技术指标

显 示: 480×272触摸点阵彩色液晶,中文显示; 测量范围: (0.0~200.0) ug/L;

(0~2000) µg/L (可选);

- 示值误差: ±2%F•S;
- 分辨率: 0.1µg/L;
- 重复性: ≤1%;
- 稳定性: ±1% F•S/4h;
- 环境温度: (5~45)℃;
- 环境湿度: ≤90%RH(无冷凝);
- 外形尺寸: 260mm×200mm×180mm; (长×宽×高)
- 电 源: 交流85~265V 频率45~65Hz;
- 功 率: 30W;
- 重 量: 3.2kg。

三 工作原理

在pH为1.1~1.3条件下,水中的可溶硅与钼酸铵生成黄色硅钼 络合物,用1-氨基-2萘酚-4-磺酸(简称1-2-4酸)还原剂把硅钼络 合物还原成硅钼蓝,用硅酸根分析仪测定其硅含量。

注:加入掩蔽剂一草酸(或酒石酸)可以防止水中磷酸盐和少量铁离子的干扰。

仪器利用光电比色原理进行测量。根据朗伯一比耳定律: 当一

TIMEPOWER

束单色平行光通过有色的溶液时,一部分光能被溶液吸收,若液层 厚度不变,光能被吸收的程度(吸光度A)与溶液中有色物质的浓度 成正比。其数学表达式:

$$\lg \frac{I_0}{I} = K \bullet C \bullet L \ \ a = K \bullet C \bullet L$$

式中:

Io一入射光强度

I 一透过光强度

C—有色物质浓度

L一有色溶液厚度

K-常数(与溶液性质和入射光波长有关)

A一吸光度

四 仪器的安装

4.1 配件检查

开箱后,请按装箱清单核对仪器的型号、规格及附件数量。

注: 1. 打开仪器包装箱,检查仪器有无破损;

2. 按装箱单核对仪器型号及配件。

- 4.2 仪器的安装
 - 1、位置要求

1. 仪器应放置在平坦、干净、无灰尘的工作台面上;

2. 仪器的安放位置应无大的振动;

3. 放置仪器的位置应远离有害气体或有液体滴落的地方;

4. 确保电源线所经过的位置接触不到高温的或有摩擦的物体。

2、仪器的安装

将仪器平稳的放在台面上,从仪器包装箱中取出仪器试剂杯
组件,然后将试剂杯支架紧固螺钉沿逆时针方向旋松,并将支架取
下,如下图 4.2.1 所示:

图 4.2.1

2. 将支架反转 180°,并用刚取下的螺钉将其紧固,如下图 4.2.2左;在安装支架时应注意试剂杯盖有螺钉的一边应朝左,这样有利于加入试剂,如下图 4.2.2 右所示:

图 4.2.2

3. 将试剂杯组件与箱体连接固定好。连接进样管路。再将电源 线与仪器的 AC 220V 三芯插座相连接, **仪器应有良好的接地环境**; 待一切准备就绪后, 打开仪器的电源开关, 即可开机。如下图 4.2.3 所示:

5.1 显示说明

接通仪器电源后,打开电源开关,首先出现一个欢迎界面,如 下图5.1.1所示:

图 5.1.1

10s后进入主测量界面,如下图5.1.2所示:

日期显示	2017-04-16 13:30:31 SUN	计时器一关	提示区
浓度值	-80.5	计时器二关	状态开关
已设定参数	ug/1 本底数值:3.2ug/1本底功能:关 计时器一:300秒 计时器二:60秒 计时器三:480秒 排时器二:10秒	计时器三关 空白校准	功能选项
	排污存储莱单业	册 打 印	\sim

图 5.1.2

5.2 按键说明

在图 5.1.2 中,功能触摸键分别在界面下部及右侧。

- 排污: 用于将测水样排出仪器;
- 存储: 在测量界面下,存储当前显示数值;
- 菜单:可进入仪表参数设置、仪表校准等选项;

打印: 如果配备打印机时可以打印当前测试数据;

计时器(1-3): 倒计时功能,用于显色计时。时间 "0"后有声音提示;

空白校准: 消除仪表累计误差。建议每天使用前进 行一次空白校准,

5.3 功能菜单及设置

1、排污

用于测量、校准时测试水样的排出。点击"排污"键后,排污 阀打开。提示区显示"正在排污"。排污时间倒计时开始,时间清 零后,排污阀关闭、提示消失。如下图5.3.1所示:

图5.3.1

2、存储

在上图5.3.1界面下,直接按"存储"键,仪表保存当前数据。 提示区显示"存储成功"。如下图5.3.2所示:

图5.3.2

3、计时器

计时器1~3用于水样显色过程的计时提醒,帮助操 作人员正确显色。

注: 计时功能为辅助功能。不使用此功能不影响水 样测试。

在上图5.3.2界面下,点击"计时器一 关"键,计时器一按键 状态变为'开'。仪器进入300s倒计时(加第一种试剂需等待5min) 状态。当倒计时结束后,仪器计时显示"0秒"后控制器内蜂鸣器"嘀…" 长鸣。再次点击"计时器一 开"键,蜂鸣器停止,计时器一按键状 态变为'关'。如下图5.3.3所示。用上述方法依次完成"计时器 二"、"计时器三"操作,并添加相应的试剂完成水样的显色。

图5.3.3

4、空白校准

仪表正常使用时建议每天进行一次空白校准,消除仪表误差。 在上图5.3.3界面下,点击"空白校准"键,进入校准界面。根据界 面中文提示使用高纯水通过进样杯注入、排污操作对比色皿进行清 洗后,再次注入适量高纯水,待电压值稳定后点击"确认"键完成 校准。如下图5.3.4所示

图5.3.4

5、打印

如果仪器配备了打印机时,使用附带的打印机串口线将打印机 与控制器后部DB9接口连接好,在上图5.3.3界面下,点击"打印" 键,将打印当前的数据、序号、时间信息。

注: 在"菜单设置"页里的"数据记录"中可以重复打印此数 据或其它已存储的数据。

6、菜单

在上图5.3.3界面下,点击"菜单"键,输入密码'0'(出厂 默认密码'0')将进入菜单设置界面。如下图5.3.5所示:

图5.3.5

(1) 参数设置

点击"参数设置"键。进入界面,如下图5.3.6所示:

 1.本底功能: 仪表每次标定后会产生本底数值。选择'关' 在当前测试值中会减掉本底值,选择'开'在当前测试值中会增加 本底值。具体说明见第6.2章节。

 密码修改:默认是'0'。点击"修改密码"右侧弹出键盘, 输入新密码(最少1位,最大4位),点击"0K"完成新密码设置。

3. 计时器(1~3):根据国标要求的试剂混合顺序时间设定3
个时间,单位为'分钟'。出厂默认为5、1、8分钟。点击"计时器"
位置右侧会弹出键盘,输入数值,点击"OK"完成设置。

4. 排污时间:排污电磁阀工作时间,单位为'秒',保证比
色皿里的水样排放干净。出厂默认10秒钟。点击"排污时间",右
侧会弹出键盘,输入数值,点击"OK"完成设置。

5. 退出:完成参数设置后点击"退出"键返回测试界面。

2017-04-16 13:30:31 SUN					
参数设置					
本 底 功 能 : 关					
修改密码:0					
计时器一:5 分					
计时器二:1 分					
计时器三:8 分					
排污时间:10 秒					
排污存储莱单退出确认					

图5.3.6

(2) 数据记录

数据记录界面,如下图5.3.7所示:

1. 删除:可以删除当前记录。当前序号位置由下一条记录填充。
如删除4号记录后,原5号记录变为4号记录。

2. 退出: 点击"退出"键返回测试界面。

3. 打印: 配制了打印机时,可以重复打印当前数据。

4. 上、下:用于上翻、下翻记录,方便历史数据查找。

图5.3.7

(3) 校准记录

点击"校准记录"键。进入界面,如下图5.3.8所示:

1. 删除:可以删除当前记录。当前序号位置由下一条记录填充。
如删除4号记录后,原5号记录变为4号记录。

2. 退出: 点击"退出"键返回测试界面。

3. 上、下:用于上翻、下翻记录,方便历史数据查找。

图5.3.8

(4) 仪表校准

点击"仪表校准"键。进入界面,如下图5.3.9所示:

校准方法见第六章。

1. 排污:用于校准时排出水样,清洗比色皿。

2. 退出: 点击"退出"键返回测试界面。

2017-04-16	6 13:30:31 SUN				
仪表校准					
空白校准	比色皿清洗提示:				
倒加药校准	样品加入进样杯中,等待溢流完成后,按 "排污"键"排污完成后,清洗比鱼四完成!				
标液一校准					
标液二校准	2502mV 2576mV				
排污(6 個 華 单 退 出 峭 人				

图5.3.9

(5) 仪表信息

点击"仪表信息"键。进入界面,如下图5.3.10所示:

退出:点击"退出"键返回测试界面。

图5.3.10

六 仪器校准及水样测量

6.1 仪器的校准

仪器初次使用或长时间不用时,必须做曲线校准,以确保测量 数据准确、可靠。

注: (1) 校准仪器所需的标准溶液及其溶液的配制方法,请参看 第九章节附录部分溶液的制备。

(2)通常采用两点校准法进行仪器的校准,即校准10μg/L和 80μg/L两个浓度点(大量程仪表可校准10μg/L和1600μg/L两个浓 度点,第二点客户也可根据实际情况进行选择)。

在图5.3.5界面中点击"仪表校准"键,进入标液校准界面。在 此界面下按从上到下顺序依次完成校准。如下图6.1.1

图6.1.1

上图6.1.1界面下,点击"空白校准"键,仪器进入空白校准界面,如下图6.1.2所示:

15

注:每次点击"排污"键后界面右上角会有文字提示。

图6.1.2

按界面右面提示,从仪器进样杯加入高纯水或二次蒸馏水,待 仪器有溢流后稍等片刻,按"排污"键,将水排出,反复做二次完 成比色皿清洗。再次加入水样,待电压值稳定后(一般上、下波动 不超过±3mV),按"确认"键,完成空白校准。同时进入倒加药校 准界面,如下图6.1.3所示:

图6.1.3

按界面右面提示,从仪器进样杯"倒加药"水样,待仪器有溢 流后稍等片刻,按"排污"键,将水排出,反复做二次完成比色皿 清洗。再次加入"倒加药"水样,待电压值稳定后(一般上、下波

动不超过±3mV),按"确认"键,完成倒加药校准。同时进入标液 一校准界面,如下图6.1.4所示:

图6.1.4

按界面提示,从进样杯加入已显色,浓度为10µg/L的标准溶液 一,直到仪器排污管有溢流,按"排污"键将标准溶液一排出,反 复做二次完成比色皿清洗。再次加入"标准溶液一"水样,排污管 有溢流后,待电压值稳定(一般上、下波动不超过±3mV),按"确 认"键,完成标液一校准。同时进入标液二校准界面,如下图6.1.5 所示:

图6.1.5

按界面提示,从进样杯加入已显色,浓度为80µg/L的标准溶液 二(默认为80µg/L。大量程仪表默认为1600µg/L。浓度可修改,范 围大于标液一,小于最高量程。若此时想修改标液二浓度,点击数 值位置,在弹出的键盘中输入数值,按"OK"键完成设置,同时准 备相应标液。),直到仪器排污管有溢流,按排污键将标准溶液二 排出,反复做二次完成比色皿清洗。再次加入"标准溶液二"水样, 排污管有溢流后,待电压值稳定(一般上、下波动不超过±3mV), 按"确认"键,完成标液二校准。如果仪表没有提示校准错误则返 回到校准界面,仪表校准完成。如下图6.1.6所示:

图6.1.6

上图6.1.6界面下,连续点击"退出"键仪表进入测试界面。此时仪表可以正常使用了。

6.2 本底功能说明

为消除标准液体中本底硅对浓度的影响, 使测量更加准确, 特 设定此功能实现本底补偿。

注:此项功能有两个选项(开/关)可供选择,建议用户测量时 将本功能打开,尤其对含硅量低的样品进行测量时意义尤为重要。

注:每次校准仪器后,仪器均会自动计算出校准液体中本底硅的含量,每次校准后本底数值会显示在测试界面里。

标液二校准完成后,返回到测量界面后,当本底功能为'关'时,标液二的显示浓度如下图6.2.1所示:

图6.2.1

若本底功能为'开',则显示数值如下图6.2.2所示:

图6.2.2

6.3水样的测量

1、按9.2章节水样的显色方法,制备100mL待测水样,然后按以下方法进行操作。

2、在测量水样之前应先对仪器进行空白校准(见5.3章节), 空白校准完成后,再进行水样的测量。

3、在主测量界面下,直接按"排污"键,排出仪器内存留水样, 然后将已显色的被测水样直接倒入进样杯,直到排污管有溢流,然 后排污,再倒入显好色的被测水样,直到排污管有溢流,待显示数 值稳定即可读数。

注:每次测量水样前,都应对仪器做空白校准,然后再进行测 样工作。

七 注意事项

 1. 在仪器出现明显故障时,用户不要自行打开修理,请及时与 厂家联系。

2. 用户不用经常做曲线校准,只需平时做空白校准即可。

 新有试剂应保存在专门标识的聚乙烯塑料瓶中。所有试剂的 质量等级都必须是分析纯或分析纯以上。且未过保质期。

4. 仪器在首次使用时应用 5%的盐酸浸泡 24h 以上, 然后用最高

20

品质的去离子水冲洗几遍。

 5.用于配制溶液的Ⅱ级试剂水必须是纯度很高的高纯水,最好 是高性能混床离子交换装置产生的去离子水(25℃时,电导率小于
0.2μS/cm),这样,才能尽量避免由于Ⅱ级试剂水本底含硅量而造 成的测量误差。

6. 如果注入试样杯的硅酸根标准溶液或显色试剂取多了,应将 校准溶液倒掉,将试样杯及配制溶液所用的用具清洗干净后重新配 制。

 7.平时不做试验时,仪器应放置在干燥环境中,以免仪器因受 潮而造成测量不稳定。

 8.每次校准仪器后应用高纯水将进样系统冲洗干净。平时不做 试验时,仪器进样系统应装入高纯水,以保持仪器进样系统湿润。

9.为了测量准确、稳定,应对仪器做周期性的校准。平时每天 应对仪器做一次空白校准,每隔两周应对仪器进行一次曲线校准, 以消除电气漂移、光学漂移和温度漂移对仪器的影响。

故障现象	故障判别	排除方法
1. 仪器开机无	1) 电源未接通	1)检查电源线是否接通
显示	2) 电源保险丝断	2) 更换保险丝(务必先切断电源)
2. 数字显示不	1) 仪器预热时间短	1)开机预热仪器
稳定	2) 外部电压不稳定	2) 改善仪器工作环境
	3) 仪器接地不良	3) 改善仪器接地状态
3. 仪器测量值	1)测量系统受污染	1)用高纯水冲洗仪器测量流路
偏大或偏小	2) 电气漂移	2) 对仪器做曲线校准
4. 仪器排污不	1) 排污接头堵塞	1)用高纯水冲洗仪器测量流路
畅	2) 排污管折叠	2)检查排污管有无折叠
5. 触摸位置不	1) 触摸键位置偏移	1) 可以在非触摸区4秒钟内用两
准		个手指连续点击屏幕大于 20 次。
		可以多试几次直至成功。进入校准
		的蓝色界面,用带尖角的笔等物品
		准确点击左上角的"+"标志中心
		点,根据"+"位置完成校准。

八 仪器常见故障判别与处理

九 溶液的制备

注: 使用浓硫酸时必须小心,特别是在稀释浓硫酸时,应将浓 硫酸缓慢注入水中!

9.1 显色试剂的配制

(1)酸性钼酸铵溶液的配制

①取50g钼酸胺[(NH₄) 6M₀₇0₂₄4H20]溶于约500mL高纯水中。

②取42mL浓硫酸(比重1.84)在不断搅拌下缓慢加入到300mL 高纯水中。

③将溶液①加入到溶液②中,然后用高纯水稀释到1L。

(2)10%草酸(或酒石酸)溶液(质量/体积)的配制

称取100g草酸(或酒石酸)溶于1000mL高纯水。

(3) 1-2-4酸还原剂的配制

 ①称取1.5g 1-氨基2-萘酚-4 磺酸[H₂NC₁₀H₅(OH) SO₃H]和7g无 水亚硫酸钠(Na₂SO₃),溶于约200mL高纯水中。

②称取90g亚硫酸氢钠(NaHSO3),溶于约600mL高纯水中。

③将溶液①、②混合后用高纯水稀释至1L,若遇溶液浑浊时应 过滤后使用。

注: 高纯水系指SiO₂本底低于5µg/L的二次去离子水。

9.2 待测水样的显色

①取待显色的水样100mL注入塑料杯中,加入3mL酸性钼酸铵溶液,混匀后放置5min;

②加入3mL的10%草酸(或酒石酸)溶液,混匀后放置1 min;

③加入2mL的1-2-4酸还原剂,混匀后放置8min。水样即显色完毕。

9.3 "倒加药"溶液的配制(即零点溶液)

取100mL高纯水注入塑料杯中,先加入2mL的1-2-4 酸还原剂, 摇匀,再加入3mL的10%草酸(或酒石酸)溶液,摇匀,最后加入3mL 酸性钼酸铵溶液,摇匀即可。

提示:倒加药溶液应在配置好后2min之内使用,否则会产生一 些微小漂移。高纯水系指SiO₂本底低于5µg/L的二次去离子水。 9.4 校准溶液的配制(即校准仪器时所用的标准液) 注: (1)仪器出厂时附带一瓶10µg/mL的硅酸根标准溶液(大量程 仪表配100µg/mL的标液)。

(2) 取用10µg/mL的硅酸根标准溶液的计算公式如下:

式中:

 C_{k} ——硅酸根标准溶液的浓度(10 μ g/mL或100 μ g/mL);

VmL——所要取硅酸根标准溶液的体积;

C_校——所要配校准溶液的浓度;

V_水——所取水样的体积;

制备方法如下:

以制备浓度为10µg/L的标准溶液200mL为例说明如下:

注:由以上公式1可知,取待显色的水样200mL需取10μg/mL的硅酸根标准溶液0.2mL。

<1>先向容积为200mL的容量瓶中注入少许高纯水,然后用移液 管取10µg/mL的硅酸根标准溶液0.2mL加入高纯氷中,摇匀后用高纯 水稀释至 200mL。

<2>将以上200mL水样注入塑料杯中,加入6mL酸性钼酸铵溶液, 摇匀后放置5 min;

<3>加入6mL的10%草酸(或酒石酸)溶液,摇匀后放置1 min;

<4>加入4mL的1-2-4酸还原剂,摇匀后放置8min。校准液配制完毕。

注: 其他浓度校准液的配制方法同上。

9.5 硅储备溶液(1000mg/L)

用本方法制备的储备液可保存一年。

称取1.000(±0.001)g 经(700~800)℃灼烧过的二氧化硅(优

级纯),与(7~10)g已于(270~300)℃焙烧过的粉状无水碳酸钠 (优级纯)置铂坩埚内混匀,在(900~950)℃下熔融2.5h。冷却后, 将坩埚放入硬质烧杯中,用热的超纯水溶解熔融物,放在水浴锅上 不断搅拌。待熔融物全部溶解后取出坩埚,以超纯水仔细冲洗坩埚 内外壁,待溶液冷却至室温后,移入1L容量瓶中,用超纯水稀释至 刻度混匀后移入塑料瓶中储存。此液应完全透明,如有浑浊须重新 配制。

