目 录

一、概述
1.1 仪器的外形
1.2适用标准
1.3 主要特点
二、技术指标 ········(3)
三、工作原理(4)
3.1 化学原理
3.2分析流路(5)
3.3 电气原理
四、仪器的安装
4.1 配件检查
4.2 安装要求和注意事项(7)
4.3 仪器的安装
4.4 电源的连接
4.5 仪器的接线
五、仪器的操作(11)
5.1显示说明
5.2 功能菜单及设置(12)

1、系统菜单(12)
2、参数设置(13)
3、仪表日志(14)
4、工厂设置(17)
5、报警设置(18)
6、输出设置(19)
7、仪表信息(21)
8、历史曲线(22)
9、修改时间(23)
六、仪器的校准(23)
6.1 仪表校准(23)
6.2 输出校准
七、注意事项
八、常见故障判别与处理(30)
九、标准溶液的制备(31)
9.1 显色试剂的配制(31)
9.2 标准储备溶液(31)
9.3 标准液的配制(31)

概述

该仪器是我公司最新推出的在线系列仪器之一,主要用于溶液 中磷酸根含量测量。它是一款具有自动完成化学反应、光学检测、 图文显示、控制输出及数据存储等功能,高精度的在线式自动化仪 表。该仪器采用了彩色液晶显示器,以丰富的色彩、文字、图表和 曲线等方式,显示测量结果、系统信息以及全中文菜单操作界面。 广泛应用于火电、化工、化肥、冶金、环保、制药、生化、食品和 自来水等行业的溶液中磷酸根的连续监测。

1.1 仪器的外形

仪器的外形及结构如下图 1.1。

1.2 适用标准

引用国标 GB/T 6913《锅炉用水和冷却水分析方法》磷酸盐的 测定。

1.3 主要特点

全中文显示,操作方便:采用高分辨率的液晶显示模块,所有数据、状态和操作提示都是中文显示;

简单的菜单结构,文本式的人机对话:仪器采用了分门别类的菜 单结构,类似微机的操作方法,使用起来更清晰、更方便;

独特的空白校准功能:只需纯水即可完成空白校准,大大简化 了校准过程;

多参数同时显示:在同一屏幕上可以同时显示磷酸根浓度值、 温度、时间和状态;

测量范围: 检测下限低,非常适合低磷的检测与控制;

自动检测: 仪器可自动检测各路通道是否运行;

使用简单方便: 该仪器正常运行时,除添加试剂、标样外,无 任何工作量:

光源使用寿命长:真正使用单色冷光源的在线式磷表,光源使 用寿命长。

历史数据功能: 仪器自动存储测量界面下的磷酸根浓度值和时间,并且可存储运行, 校准记录, 可存储 6000 条数据。

数字时钟功能:显示当前的时间,为记录功能提供时间基准。

模拟信号输出方式:软件选择电流输出类型,可在 0~10mA、0~20mA 和 4~20mA 间切换选择,而不需用户拨任何开关。

二 技术指标

测量原理: 磷矾钼黄光电比色法

- 显 示: 7.0 寸彩色液晶触摸屏, 中文显示
- 测量范围: (0.00~20.00) mg/L、(0.00~50.00) mg/L 可选
- 测量精度: ±2% F.S
- 重现性: ≤±1% F.S
- 稳 定 性: 漂移不大于±1% F.S/24h
- 响应时间: < 4 分钟
- 测量周期:约3分钟/通道
- 水样要求:流量:(10~40) L/h

温度: (5 ~ 50) ℃

- 杂质: 固态物小于 5 微米, 且无胶状物出现
- 水样压力: <0.6 MPa
- 环境温度: (5 ~45) ℃
- 环境湿度: ≤90% RH(无凝结)

TIMEPOWER

试剂消耗:约3升/月

输出信号: 隔离的直流电流信号, 0~20mA、4~20 mA、0~10 mA

三种模式可任意设置

报警信号: 各通道独立报警, 断流报警、上下限报警

- 电 源: AC (85~265) V 频率(45~65)Hz
- 功 耗:100 ₩
- 外形尺寸: 460mm×280mm×720 mm
- 开孔尺寸: 645mm×410mm
- 重 量: 22kg

三 工作原理

3.1 化学原理

1、在酸性介质水样中的磷酸盐与钒钼酸生成黄色的磷钒钼酸混
 合物,然后用磷酸根分析仪测定其磷酸盐含量。

仪器利用光电比色原理进行测量。根据朗伯一比耳定律:当一 束单色平行光通过有色的溶液时,一部分光能被溶液吸收,若液层 厚度不变,光能被吸收的程度(吸光度A)与溶液中有色物质的浓度 成正比。其数学表达式:

$$\lg \frac{10}{I} = K \bullet C \bullet L \ \ a = K \bullet C \bullet L$$

式中:

Io-入射光强度

I 一透过光强度

C—有色物质浓度

L一有色溶液厚度

K-常数(与溶液性质和入射光波长有关)

A一吸光度

2、上述显色产物的最大吸收在 400nm 左右,本仪器选用 420nm 特制光源进行测定。

3.2 分析流路

测量过程采用定量进样、显色反应、比色分析的方式,流路如下图 3.1 所示:

图 3.1

3.3 电气原理

仪器的电气原理见图 3.2,系统主要由两部分组成。

 1、检测驱动部分:驱动仪表流路系统各执行部件(电磁阀)和光 源;并对检测器中光电池的检测信号进行数字化处理,实现了仪器 的自动化动作和电→光→电的信号转换,以及电信号的数字化过程。
 这部分由测量流路、检测器、电路板(单片机)、电磁阀和空气泵(提 供试剂及标样输送动力)组成。

电路工作原理框图

图 3.2

2、显示输出部分:对检测到的数据进行存储和显示;并输出开关 (一路报警输出)和模拟(六路电流输出 4~20mA)信号,适用于 控制各种自动化设备;可通过触摸屏操作来对仪器进行参数设置、 校准、测试以及查询历史测量数据(曲线)。

四 仪器的安装

4.1 配件检查

开箱后,请按装箱单核对仪器的型号、规格及附件数量。

4.2 安装要求和注意事项

1、仪器安装位置尽可能靠近采样点,所取水样应具有代表性;

2、被测水样和环境温度应在 5~50℃之间,否则将影响化学分析过程,从而影响测量准确度;

3、保证水样无杂质和污物,由于检修等原因造成水质不合格时, 应断开水样,仪器停止运行;

4、安装仪器的工作环境周围,不应有强电磁场和强振动源;

5、仪器要安装在干燥无尘,无腐蚀性气体的环境。

4.3 仪器的安装

1、在安装板上开 410mm×670mm 方孔,并开四个 10 的 430mm ×560mm 固定孔,如下图 4.1 所示:

图 4.1

2、将硅酸根表表箱镶嵌其中并紧固好。

3、过滤器的安装:

 把过滤器安装板按从左到右的方向用自带的圆头 M4×8 不 锈钢螺钉加弹垫和平垫固定在机箱底部。

2. 把过滤器按从左到右的方向用自带的圆头 M4×8 不锈钢螺 钉加弹垫和平垫固定在过滤器安装板上。

3. 先用自带的 PU 软管(@8×@6)将对应的过滤器和仪器进样 口连接,然后再截取两段 100mm 的 PU 软管(@8×@6),最后用截取 的 PU 软管(@8×@6)把过滤器和不锈钢三通快插接头连接,再用 PU 软管把泄压阀高压端与不锈钢三通快插接头连接,并保证其密 封性。

4. 先用 PU 软管(∅8×∅6)把现场进样管口和不锈钢三通快插接头采用合适的方式连接,并保证密封性,再用 PU 软管(∅8×∅6)
把泄压阀低压断处水样引入排废管或排水沟。结构见图 4.2

注: 仪器运行前,用手拧紧试剂和标液瓶对应电磁阀的接头, 瓶内加入试剂和标液前先加入纯净的水进行 30 分钟试漏,确保接头 连接处可靠的密封性后,再在瓶内加入与瓶身名称相对应的试剂和 标液。

仪器加试剂和标液时避免溅到仪器上,如有请及时用湿毛巾反 复擦拭干净,保证仪器不被腐蚀,并对仪器进行各部分定期维护, 保证仪器正常。

图 4.2

4.4 电源的连接

1、仪器必须可靠接地,接地电阻应小于 0.4Ω;

2、交流输入电压为 AC220V±10% 50HZ,电源线从仪器箱体侧 面穿线孔穿入,连接到交流电源端子上;火线接 L,零线接 N,地线 接在 GND 标志位置。

4.5 仪器的接线

仪器接线端子分布位置如下图 4.3 所示:

图 4.3

仪器接线端子分布如下表 2 所示:

表 2

序号	电路板符号	接线说明	序号	电路板符号	接线说明
1	L	开关火线	0	Ν	开关火线
1	L1	开关火线	2	N1	开关火线
	L	220V AC入口		Ν	220V AC 接口
3	Ν	220V AC入口	4	L	220V AC 接口
	FG	电源接地端		FG	电源接地端
5	Ν	气泵零线	6	+	电流一+
5	L	气泵火线	6	-	电流一-
7	+	电流二+	- 8	+	电流三+
(_	电流二-		_	电流三-
0	+	电流四+	10	+	电流五+
9	_	电流四-	10	-	电流五-
11	+	电流六+	10	+	温度+
	_	电流六-	12	GND	温度-
13	+	光源+	14	+	测量+
	_	光源-	14	GND	测量-
15	+	参比+	16	+	断样一+

	GND	参比-		GND	断样一-
17	+	电磁阀1+	10	+	电磁阀 2 +
	GND	电磁阀 1 -	10	GND2	电磁阀 2 -
10	+	电磁阀 3 +	20	+	试剂一+
19	GND2	电磁阀 3 -		GND2	试剂一-
- 21	+	校准一+	0.0	+	校准二+
	GND2	校准一-		GND2	校准二-
0.0	+	通道/校准+	04	+	通道一+
23	GND2	通道/校准-	24	GND2	通道一-
25	+	通道二+	26	+	通道三+
20	GND2	通道二-	20	GND2	通道三-
97	+	通道四+		+	通道五+
21	GND2	通道四-	20	GND2	通道五-
29	+	通道六+			
	GND2	通道六-]		

五 操作说明

5.1 显示说明

接通仪器电源后,打开电源开关,显示如下图 5.1 所示:

10 秒钟后仪器进入初始状态,如下图 5.2 所示:

图 5.2

上图 5.2 界面下, 主机初始化完成后, 转入正常测量界面, 如下 图 5.3 所示:

图 5.3

5.2 功能菜单及设置

1、系统菜单

在测量界面图 5.3 下,点击"系统菜单",进入系统菜单显示 界面,如下图 5.4 所示:

图 5.4

2、参数设置

在上图 5.4 菜单设置界面下,点击"参数设置"菜单,进入参数设置界面,如下图 5.5 所示:

图 5.5

在上图 5.5 参数设置界面下,先点击"通道一状态设置"后面 的汉字(开/关),该汉字出现反白现象,根据所需设定的状态在界 中选择"开"或"关",并按"是"/"否"确认开关,修改完成后, 按确认键,保存修改。若不进行保存,直接按退出键即可。

TIMEPOWER

注: 其它通道的设置方法和通道一的设置方法相同。

3、仪表日志

在上图 5.4 系统菜单界面下,点击"仪表日志"菜单,进入仪表日志菜单界面,如下图 5.6 所示:

图 5.6

1) 运行记录

在上图 5.6 菜单界面下,点击"运行记录"菜单,则可进入仪器运行记录查看界面,如下图 5.7 所示:

图 5.7

在上图 5.7 界面下,点击"下一页"键,则记录翻至下一页, 点击"上一页"键,则记录翻至上一页,点击"退出"键,则退出 运行记录查看界面。

注:此项保存了对仪器的各项操作,如:开机、关机、仪器校准、 修改时间和各项参数设置等。可保存 256 条记录,当数据超过 256 条时,只存储最近 256 条的记录。

2) 校准记录

在上图 5.6 仪表日志界面下,点击"校准记录"菜单,则可进 入仪器校准记录查看界面,如下图 5.8 所示:

图 5.8

在上图 5.8 界面下,点击"下一页"键,则记录翻至下一页, 按"上一页"键,则记录翻至上一页,点击"退出"键,则退出校 准记录查看界面。

注:此项保存了对仪器校准的操作,如:仪器校准时间、校准零

(16)

点和校准斜率等。可保存 256 条记录,当数据超过 256 条时,只存储最近 256 条的记录。

3) 数据记录

在上图 5.6 仪表日志界面下,点击"数据记录"菜单,则可进入仪器数据记录查看界面,如下图 5.9 所示:

图 5.9

在上图 5.9 界面下,点击"下一页"键,则记录翻至下一页, 按"上一页"键,则记录翻至上一页,点击"退出"键,则退出数 据记录查看界面。

注:此项保存了仪器按照设定的存储间隔自动保存下来的测量数据,可保存 6000 条记录,当数据超过 6000 条时,只存储最近 6000 条的记录。

4) 清除数据

在上图 5.6 仪表日志界面下,点击"清除数据"菜单,则可进

17

清除数据记录	
如果要进行数据记录清除,请按" 开始,否则请按"退出"键返回!	确认"键 退出
	确认

入清除数据提示界面,如下图 5.10 所示:

图 5.10

在上图 5.10 界面下,点击"确认"键,则可清除数据记录中的 所有数据,无需清除则按"退出"键,若清除数据,则所清除的所 有数据将无法恢复。

注: 该功能只清除数据记录中的内容,不会清除运行记录和校 准记录中的内容。

5) 退出

在上图 5.6 仪表日志界面下,点击"退出"菜单,则仪器界面 返回至上一级菜单。

4、工厂设置

此设置用于工厂调试仪器,不对用户开放。

注:工厂设置中的参数出厂时已设置好,用户无需重复设置。如果有特殊需要请联系售后服务人员。随意改动设置将影响仪器正常使用。

5、报警设置

在图 5.4 系统菜单界面下,点击"报警设置"菜单,进入报警 设置界面,如下图 5.14 所示:

图 5.14

在上图 5.14 报警设置界面下,点击"通道一上限报警"后面的数值,该组数值的第一位数字出现反白现象,如下图 5.15 所示:

图 5.15

点击下面的"数字"键,选择合适的数字,点击"左移/右移" 方向键移动光标,设置完成后,点击"确认"键,保存设置,若不需

(19)

保存修改直接点击"退出"键退出即可。

注: 其它通道的设置方法和通道一的设置方法相同。

6、输出设置

在图 5.4 系统菜单界面下,点击"输出设置"菜单,进入输出 设置界面,如下图 5.16 所示:

图 5.16

1) 输出零点,输出满度设置

在上图 5.16 输出设置菜单界面下,点击"输出零点"/"输出 满度"菜单,进入输出零点/满度设置界面,如下图 5.17 所示:

图 5.17

在上图 5.17 输出零点设置界面下,先点击"通道一零点设置" 后面的数值,该组数值的第一位数字出现红色光标现象,如下图 5.18 所示:

图 5.18

点击下面的"数字"键,选择合适的数字,点击"左移/右移" 方向键移动光标,设置完成后,点击"确认"键,保存设置,若不需 保存修改直接点击"退出"键退出即可。

注:其它通道的输出零点与满度设置方法和通道一的方法相同。 2)输出类型

在上图 5.18 输出设置菜单界面下,点击"输出类型"菜单,进 入输出电流类型设置界面,如下图 5.19 所示:

输	出电流类型	J
通道一输出电流类型:	4-20mA	
通道二输出电流类型:	4-20mA	0-10mA
通道三输出电流类型:	4-20mA	
通道四输出电流类型:	4-20mA	0-20mA
通道五输出电流类型:	4-20mA	
	4-20mA	4-20mA
	退	出确认

图 5.19

在上图 5.19 输出类型设置界面下,先点击"通道一输出类型" 后面的数值,该组数值出现反白现象,根据所需设定的数值类型, 在界面右侧的三组输出类型选项中选择合适的一组,修改完成后, 点击"确认"键,保存修改。若不进行保存,直接点击"退出"键 即可。

注: 其它通道的设置方法和通道一的设置方法相同。 3)输出校准

注:输出校准方法请参阅第六章节内容。

7、仪表信息

在系统菜单图 5.4 下,点击"仪表信息"菜单,进入仪表信息 查看界面,仪器信息菜单包含了仪器的出厂信息,本菜单的内容只能 阅读不能修改,如下图 5.20 所示:

	仪表信息
仪表型号:	TP107
软件版本:	
服务电话:	400-1688-500
厂家网址:	WWW.timepower.cn 🤍
仪表厂家:	北京时代新维测控设备有限公司

图 5.20

8、历史曲线

在测量界面(图 5.3)下,点击"历史曲线",进入历史曲线显示界面,如下图 5.21 所示:

图 5.21

在上图 5.21 界面下,可按下要查询的通道,进入要查询的通道, 该通道汉字变为白色。则横坐标下面显示当前数值,纵坐标旁显示 选取的通道。

9、修改时间

在测量界面(图 5.3)下,直接点击该界面下的日期及时间,可进入仪器时间修正界面,如下图 5.22 所示:

图 5.22

在上图 5.22 界面下,点击下面的"数字"键,选择合适的数字, 点击"左移/右移"方向键移动光标,设置完成后,点击"确认"键, 保存设置,若不需保存修改直接点击"退出"键退出即可。

六 仪器的校准

6.1 仪表的校准

该仪表的校准是自动进行的,一切准备工作做好后,只需在校 准页面点击"确认"键,整个校准过程由仪表自动完成。

1、准备工作

仪器的校准需要三种液体,分别是标液一(高纯水),标液二

24

(磷标液20mg/L),试剂一(含有浓硫酸的磷显色试剂)。

1) 根据情况准备标准液与试剂,每种至少1000mL;

2)标准液的具体配制方法参照附录部分。

2、校准方法

在系统菜单界面(图 5.4 下,点击"仪表校准",进入输入密 码提示界面,如下图 6.1 所示:

仪表校准				
请输入密码: 0000				
0 1 2 3 4 左移				
5 6 7 8 9 右移	退出 确认			

图 6.1

在上图 6.1 界面下,按下面的"数字"键选择数字,按"左移/ 右移"方向键移动光标,密码输入完成后,按"确认"键,进入仪表校 准菜单界面,如下图 6.2 所示:

注:仪器出厂初始密码为8888。

图 6.2

上图6.2界面下,点击"开始"菜单进入校准提示界面,先是空 白校准,如下图6.3所示:

图 6.3

当空白校准完成后, 仪器自动进入标液一的校准, 此时进入标 液一校准液面, 如下图6.4所示:

图6.4

当标液一校准完成后, 仪器自动进入标液二的校准, 此时进入 标液二校准液面, 如下图6.5所示:

图6.5

待标液二校准完成后,整个仪表校准完成,仪表自动返回"系 统菜单"页面。

6.2 输出校准

注:以下操作以通道一电流输出类型为(4~20)mA为例说明, 其它电流类型的校准方法与(4~20)mA相同。

进入仪器"输出设置"菜单,进行输出电流类型的选择,如下 图6.6所示:

输	出电流类型	
通道一输出电流类型:	4-20mA	
通道二输出电流类型:	4-20mA	0-10mA
通道三输出电流类型:	4-20mA	
通道四输出电流类型:	4-20mA	0-20mA
通道五输出电流类型:	4-20mA	
通道六输出电流类型:	4-20mA	4-20mA
	退出	确认

图6.6

电流类型设置完成后,点击"输出校准"菜单,进入输出校准 界面,如下图6.7所示:

图 6.7

上图6.7界面下,点击通"道一电流输出零点"后面的数字,输入所要校准的零点,直接点击"确认"键,进入输出电流校准提示界面,如下图6.8所示:

输出校准				
	.: 🖲 600	通道一电流标出满度: 3600		
	A: 0600	通道二电流输出满度: 3600		
	A: 0600	通道三电流标出涡度: 3600		
	k: 0600	通道四电流输出满度: 3600		
	.: 0600	通道五电流输出漏准: 3600		
	N: 0600	通道穴电流射出满度: 3600		
请将万用表打	至也混樹并非	这至对应的输出口两端、调整数值使万用表		
显示至 04 1		认得完成,或者指退出通過出被准!		
0 1 2	3 4	左移		
5 6 7	8 9	右移 退出 确认		

图6.8

按照上图6.8界面的提示,把万用表打至电流档,将两表笔接到 接线板"通道一"端子的"- 电流一 +"上,万用表红表笔与"+" 接触,黑表笔与"-"接触,然后修改"通道一电流输出零点"后面 的数值。点击"左移"或"右移"键可移动光标,观察万用表读数, 当万用表显示数值为4.00mA±0.01 mA时,点击"确认"键,完成"通 道一"电流输出零点的校准。在上图6.8界面下,点击"通道一电流 输出满度"后面的数字,进入通道一电流输出满度校准界面,如下 图6.9所示:

图6.9

按上图6.9界面提示,修改"通道一电流输出满度"后面的数值, 点击"左移"或"右移"键可移动光标,观察万用表读数,当万用 表显示数值为20.00mA±0.01 mA时,点击"确认"键,完成"通道 一电流输出满度"的校准。

注:其它通道的校准方法与通道一的校准方法相同。

七 注意事项

 1. 在仪器出现明显故障时,用户不要自行打开修理,请及时与 厂家联系。

2. 若开机无显示,请检查电源线是否接好。

3. 如使用说明书与实际操作有差异时以仪器为准。

 4. 所有试剂应保存在专门标识的聚乙烯塑料瓶中。在使用之前, 必须用洗涤剂和水彻底清洗,然后用最高品质的去离子水冲洗几遍。
 所有试剂的质量等级都必须是分析纯或分析纯以上。且未过保质期。

5. 用于配制溶液的 II 级试剂水必须是纯度较高的纯水,才能尽量避免由于 II 级试剂水被污染而造成的测量误差。

故障现象	故障判别	排除方法
1. 仪器开机无	1) 电源未接通	1)检查电源线是否接通
显示	2) 电源保险丝断	2) 更换保险丝(务必先切断电源)
	3) 开关问题	3)更换开关
2. 数字显示不	1) 仪器预热时间短	1) 改善仪器工作环境
稳定	2) 外部电压不稳定	2) 改善仪器接地状态
	3) 仪器接地不良	
3. 仪器测量值	1)测量系统受污染	1)用高纯水冲洗仪器测量流路
偏大或偏小	2) 电气漂移	2) 对仪器做曲线校准
4. 仪器排污不	1) 排污接头堵塞	1)用高纯水冲洗仪器测量流路
畅	2) 排污管折叠	2)检查排污管有无折叠
	3) 电磁阀问题	3)检查或更换电磁阀
5. 关机后时钟	1)后备电池电量不足	1)更换显示屏后部电池。或主控
复位或数据存		板的电池。
储时间错误		

八 仪器常见故障判别与处理

九 标准溶液的制备

使用浓硫酸时必须小心,特别是在稀释浓硫酸时,应将浓硫酸 缓慢注水中!

9.1 显色试剂的配制(钒钼酸铵溶液)

① 称取50克钼酸铵和2.5克偏钒酸铵溶于400mL除盐水中。

② 量取195 mL浓硫酸(比重1.84),在不断搅拌下徐徐加入到250mL除盐水中,并冷却至室温。

③ 将溶液②加入溶液①中,用除盐水稀释至 1L。 所有试剂应保存在专门标识的聚乙烯塑料瓶中。

9.2 标准储备溶液(1mg/mL)

称取在105℃干燥过的磷酸二氢钾1.433 克,溶于少量除盐水中, 摇匀后稀释至1L。

9.3 校准液的配制(即校准仪器时所用的标准液)

注: (1) 仪器出厂时附带一瓶1mg/mL的磷酸根标准溶液。

(2) 取用1mg/mL的磷酸根标准溶液的计算公式如下:

式中:

C标——磷酸根标准溶液的浓度(1mg/mL);

VmL——所要取磷酸根标准溶液的体积;

C_校——所要配校准溶液的浓度;

V_水——所取水样的体积;

制备方法如下:

以制备浓度为20mg/L的标准溶液100mL为例说明如下:

注:由以上公式1可知,取100mL高纯水需取1mg/mL的磷酸根标 准溶液2mL。

<1>先向容积为100mL的容量瓶中注入少量高纯水,然后用移液 管取1mg/mL的磷酸根标准溶液2mL加入高纯氷中,摇匀后用高纯水稀 释至 100mL。摇匀后校准液配制完毕。

注: (1) 其他浓度校准液的配制方法同上。

