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Abstract
Hydrophilic metabolites play important roles in cellular energy metabolism, signal transduction, immunity. However, there 
are challenges in both identification and quantification of the hydrophilic metabolites due to their weak interactions with 
C18-reversed-phase liquid chromatography (RPLC), leading to poor retention of hydrophilic metabolites on the columns. 
Many strategies have been put forward to increase the retention behavior of hydrophilic metabolites in the RPLC system. Non-
derivatization methods are mainly focused on the development of new chromatographic techniques with different separation 
mechanisms, such as capillary electrophoresis, ion-pairing RPLC etc. Derivatization methods improve the hydrophobicity 
of metabolites and can enhance the MS response. This review mainly focused on the illustration of challenges of LCMS in 
the analysis of hydrophilic metabolomics field, and summarized the non-derivatization and derivatization strategies, with 
the intention of providing multiple choices for analysis of hydrophilic metabolites.

Keywords Hydrophilic metabolites · Hydrophilic interaction chromatography · Ion-pairing reversed-phase liquid 
chromatography · Ion chromatography · Capillary electrophoresis · Derivatization

Abbreviations
ATP  Adenosine triphosphate
BSTFA  N, O-bis (trimethylsilyl) trifluoroacetamide
cAMP  Cyclic adenosine monophosphate
CapIC  Capillary ion chromatography
CE  Capillary electrophoresis

cGMP  Cyclic guanosine monophosphate
dCMP  Deoxycytidine monophosphate
dCDP  Deoxycytidine diphosphate
dCTP  Deoxycytidine triphosphate
DIPEA  Diisopropylethylamine
EDC  1-(3-Dimethylaminopropyl)-3-ethyl 

carbodiimide
EOF  Electro-osmotic flow
ESI  Electrospray ionization
GC–MS  Gas chromatography–mass spectrometry
GDP  Guanosine diphosphate
GPCR  G protein-coupled receptor.
GTP  Guanosine triphosphate
HAc  Acetic acid
HFIP  Hexafluoroisopropanol
HILIC  Hydrophilic interaction liquid 

chromatography
HMDB  Human Metabolome Database Bank
HMDS  Hexamethyldisilazane
HXA  Hexylamine
IC  Ion chromatography
IP(RP)LC  Ion-pairing(reversed-phase) chromatography
IPR  Ion pairing reagents
LOD  Limit of detection
LOQ  Limit of quantification
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MS  Mass spectrometry
NaADP  Niacin adenosine dinucleotide phosphate
NAD+  Oxidized form of nicotinamide-adenine 

dinucleotide
NADH  Reduced form of nicotinamide-adenine 

dinucleotide
NADP+   Oxidized form of nicotinamide-adenine dinu-

cleotide phosphate
NADPH  Reduced form of nicotinamide-adenine dinu-

cleotide phosphate
NMR  Nuclear magnetic resonance
NPLC  Normal phase liquid chromatography
RPLC  Reversed-phase liquid chromatography
TBA  Tributylamine
TCA   Tricarboxylic acids
TEA  Trimethylamine
TMCS  Trimethylchlorosilane
4-APEBA  4-(2-{[2-(4-Bromophenyl)ethyl](dimethyl)

ammonio}ethoxy)anilinium dibromide
6-AQC  6-Aminoquinoline-N-hydroxysuccinimide 

ester
5-AIQC  5-Aminoisoquinolyl-N-hydroxysuccinimidyl 

carbamate

1 Introduction

Hydrophilic metabolites are widely present in biological 
samples, which cover many important metabolic pathways, 
including amino acid metabolism, nucleotides metabo-
lism, central carbon metabolism, water-soluble vitamins, 
and cofactors metabolism and so on. Therefore, it is not 
an understatement that hydrophilic metabolites infiltrate at 
least half of metabolic pathways. In addition, fluxomics, an 
emerging strategy in recent years to depict the flow rate of 
metabolic pathways, are mainly concerned with the central 
carbon metabolism [1, 2], which are also hydrophilic metab-
olites. Therefore, precise identification and quantification 
of hydrophilic metabolites are important in wide biological 
research.

Although the hydrophilic metabolites play important 
roles in physiological and pathological processes, it is very 
difficult to measure these highly hydrophilic, polar or even 
ionic metabolites. Nuclear magnetic resonance (NMR) is 
one of the first tools employed for polar metabolite analy-
sis because it does not require separation and complex pre-
treatment [3, 4]. However, hydrophilic metabolites in bio-
logical fluids present a fairly wide dynamic range from nM 
to mM [5, 6]. Although NMR is very useful for the identi-
fication and quantification of metabolites with great repro-
ducibility, it can only detect those metabolites with high 
concentrations such as amino acids, organic acids (above 
100 µM in general). NMR lacks sufficient sensitivity for 

low abundance metabolites, like phosphorylated metabo-
lites, hormones, and cofactors. In addition, proton NMR 
spectra display heavy peak overlapping, likely leading to 
inaccurate concentration calculation. Although the highly 
sensitive chromatography coupled with mass spectrometry 
could overcome these issues, the weak retention behav-
ior and ion suppression pose great challenges in LC–MS 
analysis.

In the literature, most reviews focused on the specific 
technologies [7–9] or the full metabolomics and lipidomics 
[10, 11]. In this review, we pay more attention to the hydro-
philic metabolites with important biological functions and 
discuss the challenge of LC–MS analysis for the hydrophilic 
metabolites. The development of derivatization strategies 
with high-retention in LC and high-sensitivity in MS detec-
tion should have huge potential for detecting the hydrophilic 
metabolites.

2  The Biological Functions of Hydrophilic 
Metabolomics

2.1  Amino Acids and Metabolites with Amino Group

Amino acids are zwitterionic metabolites with both amino 
group and carboxyl group, which can integrate into central 
carbon metabolism through a range of organic acids inter-
mediates. For example, glutamic acid and glutamine can 
integrate Krebs cycle through the clawback mechanism pro-
ducing γ-aminobutyric acid (GABA) [12]. Many researches 
indicate that glutamic acid is an important substrate for 
metabolic reprogramming for cancer cells. Tryptophan 
(Trp) is reported as a signal molecule [13] that participates 
in regulating immunity [14], neurological function [15, 16] 
and gut steady-state [17, 18] through the kynurenine path-
way. The catabolism of Trp has immune inhibition to Th1 
lymphocytes [19]. Kynurenine is regarded as an endodermic 
vasodilator to regulate the effects of nitric oxide (NO) [20]. 
Indoleamine-2,3-dioxygenase (IDO) is the first rate-limiting 
enzyme in the degradation of the kynurenine pathway and 
is closely related to inflammation inhibition and tolerance 
[13]. In addition, the Trp also mediates the development 
of many diseases in the co-metabolism with the intestinal 
flora via the 5-hydroxytryptamine pathway and mediates 
the signal transduction of aryl hydrocarbon receptor (AhR) 
[18]. The β-aminoisobutyric acid produced by catabolism 
of valine is significantly increased in the urine of patients 
with bladder tumors [21]. Trimethylamine N-oxide (TMAO) 
is a pro-inflammatory factor in the metabolism of intestinal 
flora after a high choline diet [22]. Thyroid hormones, nor-
epinephrine, and other organic amine hormones are known 
to participate in metabolic regulation.
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2.2  Organic Carboxyl Acids

Organic carboxylic acids, referring to aliphatic mono- or 
polycarboxylic acid containing small numbers of carbons 
(less than 10 carbons), including short-chain fatty acids, 
keto acids, hydroxyl acids, et al. These metabolites have 
very weak chromatographic retention behavior due to the 
presences of a large number of polar ionized groups. Short-
chain fatty acids (SCFs) have important physiological func-
tions. For example, butyric acid is considered as an impor-
tant product of intestinal flora fermentation and plays a key 
role in mediating host metabolism [23, 24], regulating the 
immune system and cell proliferation. Polycarboxylic acids 
in the Krebs cycle such as oxaloacetic acid and citric acid 
can promote the Warburg effects through metabolic repro-
gramming in cancer cells. α-ketoglutaric acid plays an essen-
tial role in the integrated regulation between cellular carbon 
metabolism and nitrogen metabolism [25]. Glyoxylic acid 
is the precursor molecule of oxalic acid which can lead to 
kidney stones [26]. In addition to energy metabolism, the 
Krebs cycle also affects immunity [27]. Succinic acid is 
known as a signaling molecule for macrophages produced in 
lipopolysaccharide and IFN-γ treated macrophages [28, 29]. 
He et al. found that succinic acid could bind to a G protein-
coupled receptor GPR9 (SUCNR1), producing a therapeutic 
effect on hypertension by modulating the renin–angiotensin 
system [30]. Itaconic acid, a methylene succinic acid, has 
been discovered to involve in host-parasitic co-immunization 
through macrophage activation [31, 32]. 2-Hydroxyglutaric 
acid has been used as an endogenous MRI probe due to its 
well humoral adaptation and the great ability to precisely 
locate the tumor tissues [33].

2.3  Nucleosides and Nucleotides

Nucleosides and nucleotides not only participate in the 
macromolecular biosynthesis of DNA and RNA to assem-
ble genetic materials, they are also direct energy substrates. 
It is well known that ATP is the basic energy source for 
many irreversible processes of biochemical metabolism and 
transmembrane transport of substances [34]; GTP-binding 
proteins constitute an important molecular switch on the cel-
lular membrane systems, which regulates the substrate-level 
phosphorylation process of proteins [35]. Meanwhile, cyclic 
nucleosides are important second messengers in GPCR-
mediated signaling pathways. cAMP can be involved in the 
glycogen metabolism and regulation of gene expression [36, 
37], as well as regulating the activation and inhibition of 
many drug receptors like adrenergic receptors and M-acetyl-
choline receptors [38, 39]. The cGMP regulates the switch 
of the photo-controlled cation channel [40] to produce visual 
effect [41, 42]. GDP and GTP can also activate the tyrosi-
nase-mediated RTK-Ras pathway by Ras receptors for gene 

expression regulation [43]. Nucleosides and numerous modi-
fied nucleosides, such as methylation modification [44–46], 
hydroxyl modification [47–50], aldehyde modification [51], 
and carboxylic acid modification [52], have important guid-
ing significance for epigenetics of genes.

2.4  Sugar and Phosphate

Carbohydrates are one of the most complex polar molecules 
due to their complex stereoisomeric forms. Different bond-
ing types lead to biomacromolecular polysaccharides with 
diverse structures and functions. The detection of mono-
saccharides and the differentiation of isomers are keys to 
elucidating the biological function of the composition of 
polysaccharides. Glucose metabolism is the basic energy 
metabolism of the organism, converting the energy sub-
stance glucose into adenosine triphosphate (ATP) that can 
be directly utilized. The sugar metabolism in cancer cells is 
distinguished from normal tissue due to the Warburg effects 
[53] referred above and is closely related to neurodegenera-
tive diseases [54]. The pentose phosphate pathway not only 
produces glucose phosphate and fructose phosphate required 
for glycolysis but also provides reduced Nicotinamide 
Adenosine Dinucleotide Phosphate (NADPH). Notably, it 
was reported that sedoheptulose-7-phosphate is a potential 
marker for the evaluation of transaldolase deficiency [55]. 
Many sugars are only found in fungus or plants, which can 
be an evaluation index for dietary intervention and expo-
some research.

2.5  Water‑Soluble Vitamins and Cofactors

Cofactors are usually the derivatives of vitamins which are 
famous for NAD (P)+ and NAD(P)H. The redox states of 
NADH and NADPH are important criteria for the evalua-
tion of cellular energy metabolism or oxidative stress [56, 
57]. Since cofactors and vitamins are mostly involved in 
the hydrogen transfer redox process without the formation 
of carbon skeletons, their physiological functions were 
overlooked in the past decades [58]. However, studies have 
shown that the reconstitution of nicotinamide is associated 
with the process of deacetylation of histone, which can pro-
long the lifespan of mammals through increasing the activity 
of NAD synthase [59–62]. NADP (Niacin adenosine dinu-
cleotide phosphate) can mediate the calcium trigger-calcium 
release mechanisms without passing through the calcium 
reservoir in the endoplasmic reticulum or sarcoplasmic 
reticulum, promoting muscle contraction, catecholamine 
secretion, insulin secretion, and T cell activation [63–65]. 
Folate metabolism provides a source of methyl for cells and 
has important regulatory power for DNA methylation [66]. 
Recent research confirms that vitamin C can participate in a 
new modification of DNA called glycerylation [67].
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2.6  Carnitine and Choline Metabolites

Carnitines are quaternary ammonium carboxylate deriva-
tives binding to fatty chains to assist in fatty acid transmem-
brane transport for β-oxidation [68], which is reported to 
have a close relationship with inborn errors metabolism [69, 
70], type II diabetes [71, 72] and tubular nephropathy [73, 
74]. Choline is involved in the formation of lecithin in ani-
mal tissues, and as a precursor, it synthesizes acetylcholine 
(ACh) and participates in neuromodulation. Betaine acts as 
a methyl donor, activates AMPK, and regulates cell osmotic 
balance [75].

3  Challenge of Analysis for Hydrophilic 
Metabolites

3.1  Influence of High Hydrophilicity 
on the Detection of Chromatographic Mass 
Spectrometry

Gas chromatography–mass spectrometry is widely used in 
the detection of amino acids and organic acids in the early 
years due to its abundant cleavage information and database 
[76–78]. However, GC–MS analysis often needs complex 
derivatization procedures and is not suitable for high-boiling 
point substances and unstable compounds like nucleotides 
and keto acids, which hampers its applications in the analy-
sis of a wider range of hydrophilic metabolites. Traditional 
reversed-phase liquid chromatography (RPLC) uses a hydro-
phobic C18-terminal non-polar stationary phase, hence it 
is difficult to form a strong hydrophobic interaction with 
hydrophilic metabolites, therefore, cannot retain hydrophilic 
metabolites on the column. The development of new sta-
tionary phase and mobile phase additives to enhance the 
hydrophilic interactions have become important strategies 
for the analysis of these substances.

3.2  High Dynamic Range

Human Metabolome Database Bank (HMDB) lists the dis-
tribution of concentration of hydrophilic metabolites in nor-
mal serum samples [6]. The summary of selective metabo-
lites is shown in Fig. 1. The wider dynamic range has been 
illustrated; for example, the content of hormones is at the 
picomole range, amino acids are often maintained at micro-
mole levels, some organic acids and sugars can go up to 
millimole levels in the plasma samples. The levels of lactic 
acid are typically related to the metabolic status. In normal 
conditions, it is below 4 mM; however, when subjected to 
intensive excise, it could even reach to 18 mM [79, 80]. In 
urine, there is also a wide concentration range of metabolites 
given the wide range of dilution factor in urine samples. A 

high abundance of hydrophilic metabolites produces strong 
ion suppression in mass spectrometry detection, which 
will affect the ionization and detection of low abundance 
metabolites. At the same time, a large number of similar 
structures that tend to elute at the same time will lead to 
cross-interfere in mass spectrometric channels. This creates 
great challenges for quantitation.

3.3  Stability

Although hydrophilic metabolites have a small molecular 
weight and a simple structure, there are still a large number 
of easily decomposable and transformable species. Keto 
acids are unstable to both heat and light but play an impor-
tant role in the Krebs cycle. In particular, oxaloacetic acid 
and α-ketoglutaric acid are easily decarboxylated in sample 
pre-processing; pyruvic acid is a light-sensitive carboxylic 
acid, which undergoes self-isomerization and redox reaction 
under light [81]. Nucleoside triphosphates may undergo a 
reversible phosphate exchange reaction (ΔG = 0) between 
NTP and NDP under the catalysis of nucleotide kinase and 
 Mg2+, which leads a problem to quantify the NTPs and 
NDPs accurately. For example, the ATP hydrolysis [82, 83] 
is a spontaneous process ( ΔG ~ − 30.5 kJ mol−1) so that 
ATP often undergo obviously in-source dissociated [84]. 
NAD(P)+ and NAD(P)H are the electron carrier with very 
strong redox capacity (the standard oxidation–reduction 
potential E0− = − 0.32 V), which leads to the uncertainty 
for quantification of NADH when samples expose to air. 
SCFs are always lost during extraction at room temperature 
due to high-saturated vapor pressures and low boiling points. 
For example, the boiling point of butyric acid is at 88 °C and 
the vapor pressure can reach 0.1 kPa. Coenzyme A is also 
unstable to the heat. Care should be taken when quantifying 
these classes of unstable metabolites.

4  Applications of Chromatographic–Mass 
Spectrometry in Detection of Hydrophilic 
Metabolites

4.1  Gas Chromatography–Mass Spectrometry (GC–
MS)

As mentioned above, GC–MS can only detect thermally 
stable and easily gasified metabolites; therefore, GC–MS 
is suitable for the detection of fatty acids, amino acids and 
small organic acids. In view of the strong polarity and high 
boiling points of amino acids and organic acids, derivatiza-
tion by converting them to the respective esters has become 
mostly used methods. Derivatization methods for GC–MS 
mainly include silanization and esterification. Silanization 
used N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA), 
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hexamethyldisilazane (HMDS) [85] or trimethylchlorosi-
lane (TMCS); these compounds can react with hydroxyl 
and amino groups simultaneously. The reaction principle 
is shown in Scheme 1. The reaction requires organic sol-
vent systems, which limits its applications for detection of 
water-soluble hydrophilic metabolites in biological samples. 
In addition, it is not recommended to apply this method for 
the detection of sugars due to the complexity of the fragmen-
tation of silanized products produced [86]. Acetyl chloride 
[87–89] or other active esters [90] have strong reactivity with 
volatile alcohols or fatty acids at low temperatures, so they 

Fig. 1  Concentration range of 
partial hydrophilic metabolites 
in human serum and urine  Data 
source is from HMDB and the 
figure is drawn by R 3.5.3 with 
ggplot2 package

Scheme 1.  Derivatization of alanine with BSTFA and HMDS in GC–
MS analysis
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are often used for the detection of organic acids. The detec-
tion of aldehydes, ketones and sugars often uses 2,4-dinitro-
phenylhydrazine [91, 92] to transform the carbonyl to oxime. 
The reaction principle is illustrated in Scheme 2.

Notably, most nonvolatile metabolites cannot be detected 
by GC–MS even after derivatization because the products 
still have a much higher boiling point. In addition, multi-
origination and multi-peak phenomena due to interferences 
between metabolites of interest and other metabolites con-
taining similar structural units hamper wider applications of 
GC–MS. One of the examples is the measurement of fatty 
acid, which could have interference from the fatty acid unit 
of phospholipids [93].

4.2  Reversed‑Phase Liquid Chromatography–MS 
(RPLC–MS)

RPLC–MS is a classic separation method in MS-based 
metabolomics research, including untargeted profiling 
and targeted quantification [94, 95]. Due to the hydropho-
bic nature of C18 columns, they cannot retain hydrophilic 
metabolites, such as amino acids and the metabolites in TCA 
cycles like citric acid. T3 column is a relatively better choice 
for retention of polar metabolites as the column reserves 
parts of silicon hydroxyl in the particle’s surfaces compared 
to C18 column. Xu’s group developed the T3 methods in 
2D-LC system to achieve the detection of both hydrophilic 
and hydrophobic metabolites at the same time. They use T3 

and BEH C18 column to cover the short-chain and long-
chain acyl Coenzyme A esters [96], which increased the 
detection efficiency and throughput. However, the hydro-
philic interaction with the T3 column is still not strong 
enough for retaining the small molecular metabolites.

4.3  Hydrophilic Interaction Liquid 
Chromatography–MS (HILIC–MS)

HILIC is firstly proposed by Andrew Alpert [97] in 1990. 
He used a polar stationary phase and an organic solvent con-
taining only 2–3% water as the mobile phase in the RPLC 
system to achieve the analysis of hydrophilic metabolites. 
The stationary phase used in the HILIC column is generally 
a polar end-capped silica gel, including a non-modified silica 
gel [98] and a modified silica gel with functional groups 
of amide (Amide), aminopropyl, diol, and zwitterionic, etc. 
[99, 100]. (Fig. 2a). The well-recognized HILIC retention 
principle is shown in Fig. 2b, the polar terminal rapidly 
forms a water layer on the surface of the stationary phase in 
the initial high percentage of organic phase. The efficiency 
of separation depends on the distributions of analytes in 
water layer and organic layer [101, 102].

HILIC columns provide a new strategy for the separa-
tion of amino acids, organic acids, carbohydrates, choline, 
carnitine, neurotransmitters, nucleosides and nucleotides 
in the hydrophilic metabolites, some recent advances have 
been listed in Table 1. Recently study suggests that zwit-
terionic sulfobetaine ZIC-HILIC is more suitable for global 
metabolic profiling compared to an underivatized silica 
HILIC stationary phase in terms of chromatographic peak 
shape and resolution as well as metabolite coverage [103]. 
Although HILIC can enhance the retention ability of these 
metabolites, low sensitivity and poor peak shapes remain to 
be problems for organic acids and phosphorylated metabo-
lites. Recently a new solvent additive, medronic acid has 
been developed to reduce the chelation between metabolites 

Scheme 2.  Derivatization of carbonyl group with DNPH in GC–MS 
analysis

Fig. 2  The stationary and the mechanism of HILIC. a The packing materials of the stationary phase commonly used for HILIC analysis; b sche-
matic diagram of the retention mechanism.  This figure is drawn by ChemBioDraw 2012 software and Microsoft PowerPoint
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and metal ions in 2018 [104]. Unlike traditional ion-pairing 
agents with ion suppression, medronic acid can ameliorate 
containment in LC system.

HILIC coupled with MS has been incorporated in two 
dimensional (2D) LC and multi-omics acquisition plat-
forms. HILIC has become a great method when combined 

Table 1  Partial applications using HILIC to achieve analysis of polar metabolomics in recent years

Analytes or objective Year Column MS instrument Highlights References

Amino metabolites 2019 ACQUITY BEH Amide column QQQ The LOD for transmitters is below 
10 ng/mL, and most metabolites 
have quantitative range from 25 
to 20,000 ng/mL

The LOQ for 40 amino acids was 
in the range of 0.6–10 ng/mL

[105–107]

Acylcarnitine 2017 Syncronis HILIC column
Kinetex HILIC silica column

Orbitrap
QTrap

Both quantification and identifica-
tion ability to analyze carnitines 
without standards via High 
resolution mass spectrometer

A more simple and precise quanti-
fication method via LC-MRM

[108, 109]

Phosphocholines 2016 Phenomenex Luna HILIC column QTrap Applicable for EDTA-plasma, 
serum and urine samples with 
high accuracy and precision

[110]

Amino acids 2016, 2017 ACQUITY BEH Amide column QQQ 13C-Glutamine as a tracer to 
monitor the change of amino 
acids in cells

The isomeric amino acids such 
as Leu, Ile and allo-Ile can be 
separated

[111, 112]

Phosphorylated surgas 2016.2017 ACQUITY UPLC BEH Amide Q-TOF Methylphosphonic acid can 
improve the separation of phos-
phorylated sugars

Trehalose-6-phosphate quantified 
first time in tissues of legume M. 
truncatula

[113, 114]

Nucleotides 2020 ACQUITY BEH amide column QTrap LOD: nucleoside triphosphates: 
5000–10,000 ng/mL, nucleo-
side diphosphate: 1000 ng/mL, 
nucleoside monophosphate: 
50 ng/mL

[115]

Methylated metabolites 2014,2019 Hypersil GOLD aQ column
XBridge BEH Amide column
Luna-NH2 column

QQQ The first systematic research of 
analysis of methylated nucleo-
sides in t-RNA

Apart from nucleosides, methyl-
ated amino acids, organic acids 
were also considered of 20 
methionine related methylated 
metabolites were revealed

[116–118]

Phosphorylated and car-
boxylated metabolites

2018 Poroshell 120 HILIC-Z column Q-TOF Medronic acid as a new solvent 
additive can improve the signal 
and peak shapes which effected 
by metal-chelated

[104]

TCA metabolites 2019 ACQUITY BEH amide column QQQ
Q-TOF

Both QQQ and QTOF method 
to realize 13C metabolic flux 
analysis

A systematic protocol for perform-
ing HILIC assisted 13C flux 
research

Network-wide metabolic pathway 
elucidation assisted by 13C tracer

[119–120]

Sulfur pathway metabolites 2015 Silica-based NUCLEODUR HILIC 
column

TOF,QQQ Thiol derivatization assisted 
HILIC- and RP-LC

[122]
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with RPLC to simultaneously cover the analysis of polar 
and nonpolar metabolites. A parallel column regeneration 
with 2D LC method has been implemented to increase the 
throughput of measurement whilst achieving high coverage 
of metabolites [123] (Fig. 3). Whilst the first set of 2D col-
umns are accountable for separating analytes, the second 
set of 2D columns are conditioning, which is essential for 
achieving data consistency with high efficiency. Recently, a 
RPLC–HILIC-tailored SRM strategy has been proposed for 
simultaneously detecting large-scale targeted metabolomics 
and proteomics, where about 101 metabolites and digested 
peptides have been detected, demonstrating the benefit of the 
integrated chromatographic spectrum [124]. Nevertheless, 
due to the complexity of interactions in HILIC, the stability 
of chromatographic retention time and the peak broaden-
ing are remained to be the problems for the HILIC method, 
hence they are still in need of further improvement [125].

4.4  Capillary Electrophoresis–MS (CE–MS)

The electrophoresis separation is driven by electrodynam-
ics and charged ions are separated according to their own 
mobility under an electric field maintained by a certain 
voltage [126, 127]. The main component of the capillary 
tube wall of the stationary phase is the silanol group that is 
formed with  SiO− group to attract positive ions under acidic 
conditions, and generates electro-osmotic flow (EOF) at the 
interfacial electric double layer spontaneously, as shown in 
Fig. 4. When the pH of the buffer is above 4 (pKa of silanol 
group), the zeta potential would increase and reach the maxi-
mum at pH ~ 7 as a consequence of the increase of the charge 
density on capillary surface. The drawback of this method 
is poor reproducibility due to the instability of EOF resulted 
from the changes of the electrochemical properties of silica 
surface (Table 2).

The approach based on capillary electrophoresis–mass 
spectrometry is a suitable for polar metabolomics analysis, 
especially cation and anion metabolites. Soga et al. [128] 
firstly used the CE–MS method to measure plasma metabo-
lite profiles in 2003 and performed a cohort analysis of 8000 
people, including both anionic metabolites such as small 
molecular carboxylic acids like lactic acid, malonic acid, 
citric acid and cationic metabolites such as amino acids, 
creatine, betaine, etc. This work provided an important refer-
ence for the determination of the absolute concentration of 
hydrophilic metabolites in plasma.

Fig. 3  The parallel column regeneration method for analysis of 
metabolites and lipids consecutively. The blue line and red line repre-
sent the two independent flow-paths. Among them, the blue line with 
11 min is HILIC elution of hydrophilic metabolites to MS, followed 

by RP elution of lipids in the red line. During the running of each 
column, the other column undergoes re-equilibration to a waste bot-
tle. Reprinted with permission from [123].  Published by The Royal 
Society of Chemistry (RSC)

Fig. 4  Electric double-layer model and Zeta potential, which was 
drawn by Microsoft PowerPoint
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The most significant advantage for CE–MS is its con-
siderable success for profiling extremely small amount of 
samples [138, 139]. It is an essential methodology to achieve 
single-cell metabolic flux analysis. In addition, CE–MS 
exhibits the superiority of stereoselective separation for 
chiral metabolites [140, 141]. Furthermore, as an important 
tool for single-cell detection, CE–MS also performs well in 
the field of in situ analysis. A special CE–MS device without 
sampling extraction has been developed [142], which can 
detect a total of 13,000 molecule features with precise the 
localization in various rat tissues. Notably, the ability to sep-
arated isobaric and isomeric metabolites, including valine 
and betaine improves the confidence for identification. The 
in situ sampling mass spectrometry coupled with CE sepa-
ration could be the next generation of mass spectrometry 
imaging (MSI) as it adds another dimension compared to 
traditional MSI and could also have the potential for single-
cell imaging analysis.

Due to a lack of pressure-driven laminar flow, eddy cur-
rent diffusion and mass transfer resistance, CE is generally 
more efficient than HPLC. However, it is also worth noting 
that when a low amount of sample performed, the sensitiv-
ity would be lower due to the post-capillary dilution effect 
produced by the axillary interface [143]. The separation effi-
ciency of CE is closely related to the electric field strength 
but Joule heat and electrodynamic dispersion can cause peak 
broadening [144]. The use of a commercial 30 kV voltage 
and even the currently reported 120 kV instrument requires 
a good electromagnetic shielding and heat sink [145]. CE 
also requires a strong acid–base balance system before and 
after MS analysis [141].

The development of CE instruments has greatly improved 
the sensitivity in metabolomics. To address the effect of the 
axillary interface on sensitivity, Tseng et al. [146] have 
developed a beveled tip sheath interface that could enhance 
the detection sensitivity. Hirayama et al. [147] developed 
a sheathless interface coupled with the mass spectrometer, 
achieved the analysis of 52 cationic metabolites with only 
1.4 nL injections, including amino acids, nucleobases, 
nucleotides, etc. and the LOD values of those ranged from 
30 to 1000 nM.

Most CE approaches need two buffer components to 
detect both anionic and cationic metabolites, and the lower 
flow rate leads to a long time to accomplish full analysis. 
Additionally, the lack of reliable repeatability [128, 148] 
also limits its application. Drouin et al. [149] used a two-step 
CE-MS that overcomes the peak broadening caused by the 
suction effect of the nebulizer. This new CE–MS enables 
simultaneous analysis of anion and cation metabolites in 
the same buffer system. In summary, CE–MS has the poten-
tial capability in single-cell hydrophilic metabolomics and 
in situ localized analysis. Analysis efficiency still needs fur-
ther improvement.

4.5  Ion Chromatography–MS (IC–MS)

Ion chromatography also called as ion-exchange chromatog-
raphy, is well applied in the ionic compound analysis [150]. 
According to the charge and size of analyte ions, the oppo-
sitely charged stationary phase is used to build electrostatic 
interactions. In the past, IC is not suitable for couples with 
MS detection, because the strong electrodes in the mobile 
phase are not friendly to MS detection. The development 
of ion suppression technology for elute, especially con-
tinuous on-line desalination, has revolutionized the filed, 
which allows IC and MS to be compatible. The suppressor 
is always composed of ion-exchange resins or electrochemi-
cal films which transforms strong background electrolytes 
to volatile weak electrolytes (e.g. Thermo Scientific Dionex 
AERS500 anion electrolytic suppressor can convert the 
potassium hydroxide gradient into pure water [151]), which 
can overcome the issues, such as environmental pollution, 
stability, and reproducibility. However, many hydrophilic 
metabolites with weak acidity are also being suppressed at 
the same time, leading to poor sensitivity. In recent years, 
attention has been paid to IC–MS research due to its favora-
ble capability of separation hydrophilic metabolites and even 
strong polar ions, ion suppression issue has been extenuated 
by adding low concentrations of volatile acids or bases to 
enhance MS signals [152].

The IC–MS has been applied to targeted metabolic pro-
filing and has demonstrated its huge potential for analysis 
of polar metabolites, especially polycarboxylic acids and 
nucleotides [153]. The limits of quantification in this study 
are from 0.25 to 50 µM with the interday assay precisions 
ranged from 1 to 19%. Detection of these metabolites using 
HILIC–MS has been proven unsatisfactory. Moreover, iso-
meric metabolites, such as citric acid and isocitric acid, 
show great separation in base conditions with IC–MS system 
which could not be obtained by HILIC or Ion-pairing RPLC 
methods. Although IC–MS can achieve favorable separa-
tion, reproducibility and sensitivity for polar metabolites, 
the efficiency of IC–MS approach raises certain concerns 
as it normally takes 20 min to complete one run of analysis. 
We suspect that by adding ammonium in the regeneration 
step could enhance the MS intensity in the negative mode 
as opposed to the methanol-pure water used in the study.

With the development of the capillary ion exchange 
column, the sensitivity for IC–MS to detect hydrophilic 
metabolites has increased. Figure 5a shows the equipment 
of an CapIC–MS. Due to its improved selectivity, IC–MS 
has achieved preliminary applications in sugar, organic acid, 
phosphate and nucleotide analysis [154–157].

Huang et al. used a commercial CapIC-Q/Extractive MS 
system to perform anion-untargeted metabolic profiling [157] 
and targeted quantitative analysis of head and neck squa-
mous cell carcinoma cells (HNSCC) [151]. Compared with 
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RPLC and HILIC, CapIC–MS has a nearly 100-fold increase 
in detection sensitivity with a LOD value of 0.2–3.4 fmol. 
Figure 5b compares the sensitivity of the ion chromatograms 
of CapIC, HILIC and UHPLC when testing of 1 ppm hexose 
phosphates. It can be seen that CapIC exhibited not only high 
sensitivity, but also good separation for isomers. In terms of 
quantification, CapIC/Q Extractive HF can accommodate a 
wide dynamic range (5 orders of magnitude) and quantify 
accurately Krebs cycle metabolites (R2 ~ 0.99), achieving full 
coverage detection of metabolites from fmol/L to nmol/L.

Sun et al. performed serum and urine metabolic profiling 
via CapIC–MS and a total of 131 polar metabolites have 
been identified and quantified. This includes metabolites in 
TCA cycle, gloxylate and dicarboxylate metabolism, amino 
acid metabolism and pentose phosphate metabolism [158]. 
CapIC–MS has also found applications in areas of cellu-
lar immunology [159] and the functional of metabolomics 
[160].

Although IC–MS has played an important role in hydro-
philic metabolites analysis, the runtime is about 60 min, 
which limits its application in cohort studies with large 
amounts of samples. In addition, realizing high coverage of 
both cationic metabolites and anionic metabolites needs two 
ion exchange columns and elute systems, which escalates 
the issue of low-throughput for clinical applications. As for 
an important approach for the simultaneous analysis of both 
polar metabolites and inorganic ions, improvement is neces-
sary to meet the demand.

4.6  Ion Pairing Reversed‑Phase Chromatography–
Mass Spectrometry (Ion Pairing, IPRPLC–MS)

The IPRPLC–MS can enhance the hydrophobic and elec-
trostatic interactions between the polar analytes and the 

stationary phase by adding ion-pairing reagents (IPR) to 
obtain better retention behavior. The use of a C18-terminal 
as stationary phase with ion-pairing reagents could greatly 
improves the stability and reproducibility of metabolic 
detection compared to the use of HILIC.

The IPRs are normally volatile amines and analytes using 
IPRs as mobile phase are often detected with negative mode. 
The common IPRs are triethylamine (TEA) [161, 162], 
tributylamine (TBA) [163–166], diisopropylethylamine 
(DIPEA) [167, 168], hexylamine(HXA) [169–171], etc. 
They are added in cooperation with charge balance reagents 
such as HAc [171] and hexafluoroisopropanol (HFIP) [162, 
167, 168]. The hydrophobic carbon chain of the amines 
would form a hydrophobic interaction with the stationary 
phase, and the amino group after ionization would form an 
electrostatic interaction with the analytes. Hence, the ion 
exchange principle can be realized in a RPLC system.

The retention mechanism of IPLC is still controversial. 
It is mainly divided into two stoichiometric mechanisms 
[172–174] based on ion-pair model and dynamic ion-
exchange model, and a non-stoichiometric model based on 
the electric double-layer model [175]. As shown in Fig. 6a, 
the ion pair model [173] considers that the IPR and the ana-
lytes in the solution are firstly combined to be neutral ionic 
molecule and then form a hydrophobic interaction with the 
stationary phase. The dynamic ion-exchange model [176] 
put forward a theory that the aliphatic chain of IPR firstly 
non-covalently bounded to the stationary phase, and then 
the head group of IPR with polar groups would interact 
with metabolite with opposite charges. Both of the models 
lack experimental evidence, nevertheless, they can provide 
a thermodynamic equation to describe the retention index. 
However, Knox and Hartwick et al. argued that these two 
models have the same initial and final states, which caused 

Fig. 5  The IC-MS for analysis of hydrophilic metabolites. a Thermo 
CapIC-Orbitrap Q/Extractive MS structure. Reprinted with permis-
sion from [157]. b CapIC/HILIC/RPLC–MS extracted ion map of 
hexose phosphate in UM1 oral cancer cells. The explanation of fig-

ure number in original figure is: a Cap IC, b UHPLC, c Cap-LC, d 
ZICpHILIC, and e Cap-HILIC.  Reprinted with permission from 
[157]. Copyright 2014 American Chemical Society (ACS)
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their thermodynamically indistinguishable (Fig. 6b). The 
electric double layer model proposed by Bidlingmeyer is 
based on experimental facts [174]. It is believed that the 
non-covalent bonding of the IPR to the surface of the sta-
tionary phase produces an electric double layer, and the 
adsorption process of the analytes is modulated by the elec-
trostatic potential. Although the electric double layer model 
considers the effects of electric field force, such as, van der 
Waals force, hydrophobic interaction and electrostatic inter-
action, for chromatographic retention, it is limited due to the 
inability of quantization. The relationship between reagent 
concentration and the stationary phase is still best descripted 
by the stoichiometric model for the prediction of the reten-
tion behavior [177].

Ion pairing chromatography owes an irreplaceable advan-
tage in the analysis of hydrophilic metabolites, especially 
small molecular acids [170], nucleotides and coenzymes A 
[166, 178]. Notably, zwitterions or metabolites that are diffi-
cult to ionize, such as amino acids, sugars, etc., are not sepa-
rated well in negative ion pair chromatography [178]. Gong 
et al. [162, 168] evaluated the separation of oligonucleotides 
using negative IPR additives like TEA, TBA, HXA, etc., and 
found the optimal concentration of IPR and HFIP. Although 

most IPLC mainly deals with anionic metabolites, there are a 
few studies developed positive IPLC methods. Li et al. [179] 
used hexafluoro butyric acid (HFBA) as a positive IPR to 
detect amino metabolites.

The biggest drawback of IPLC is the permanent con-
tamination of LC–MS system [167, 179]. Increasing the 
carbon number of the amine could enhance the interaction 
with the stationary phase, but at the same time will increase 
their boiling point, which is not compatible with mass spec-
trometers. TEA and TBA have been shown to produce the 
non-removable signals [180] of m/z = 102 and m/z = 186, 
respectively. Guo et al. [167] found that DIEPA is more 
volatile with better compatibility with the mass spectrom-
eter. Li et al. found that IPLC required a long equilibra-
tion time to achieve reproducibility and the use of 2D-LC 
switching could avoid the contamination because ion-pairing 
reagents could be eluted in the 2nd dimension of LC void 
[179]. Table 3 shows the results of nucleotides and poly-
saccharides analyzed with TEA, TBA, HXA as IPR. The 
ACQUITY UPLC BEH C18 column is most widely used in 
IPLC system due to its good tolerance of pH range (1–14) 
and temperature. In addition, hexafluoroisopropanol (HFIP) 
has high vapor pressure and volatility, which can enhance 

Fig. 6  Ion pairing chroma-
tography mechanism. a The 
dynamic ion-exchange process 
is the green arrows part; the 
ion-pairing mechanism is the 
pink arrows part. b The ther-
modynamic processes of these 
two mechanisms.  This figure is 
drawn by Microsoft PowerPoint

Table 3  Metabolome analysis of TEA, TBA, HXA as ion pair additives

Analytes Column Ion-pairing reagents References

Nucleotides, coenzyme A ODS-3 cartridge column 5 mM HXA + 10 mM  NH4Ac
10 mM TBA + 15 mM  NH4Ac

[165, 178]

Oligosaccharides ACQUITY UPLC BEH C18 5 mM HXA + 100 mM HFIP [181, 182]
Glycosaminoglycans ACQUITY UPLC BEH C18 5 mM HXA + 100 mM HFIP [183–185]
Oligonucleotides ACQUITY UPLC BEH C18 5 mM HXA + 100 mM HFIP [162, 168, 186]
Small molecule organic acids ACQUITY UPLC BEH C18 5 mM HXA + 10 mM  NH4Ac [165, 170]
Sugar phosphate Luna C18 column

ACQUITY UPLC BEH C18
5 mM HXA + 10 mM  NH4Ac [165, 171]

Cofactors (NADH, etc.) ACQUITY UPLC BEH C18/T3
Luna  NH2 column

10 mM TBA + 15 mM HAc
20 mM TEA + 20 mM  NH4Ac

[163, 187, 188]
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the ionization of negative ion metabolites in the ESI source 
to improve the analytical sensitivity [167]. The develop-
ment of IPR without containment will be revolutionary in 
the IPLC methods.

5  Chemical Derivative Assisted Hydrophilic 
Metabolites Analysis

The RPLC-MS has better repeatability, robustness, and long 
lifetime of columns owing to the nature of the packing mate-
rial of the reversed-phase column. However, the interaction 
between the hydrophilic metabolites and the C18-terminal 
phase is too weak so that they tend to flow out in the chro-
matographic dead volume. Despite the use of the new sepa-
ration technique described above, the problem of low sen-
sitivity of acidic metabolites in the negative ion mode of 
mass spectrometry remains unresolved. The development of 
chemical probes with enhanced chromatographic retention 
and the mass spectrometric response has become a solution 
for polar metabolite analysis.

An excellent probe should consist of four parts [189]: 
(1) a chemical reaction group can specifically react with a 
class of metabolites. Generally, the reaction for metabolites 
derivatization requires mild conditions, high reaction rate, 
and yield. Click reactions can meet these criteria and are 
often widely used [190–193]. (2) A hydrophobic group to 
enhance chromatographic retention: aromatic rings are pre-
ferred to be used for providing hydrophobic interactions, 
π–π interactions. (3) MS sensitivity-enhanced groups, espe-
cially strong bases with highly proton-capable ability, such 
as amino group, quaternary ammonium group. (4) Isotope 
reporting group, which can provide heavy isotope as an 
internal standard for every derivatized metabolite by chemi-
cal labeling. Meanwhile, the derivatized metabolites often 
have the same fragment ion produced by reagent via colli-
sion-induced dissociation (CID) so that it can provide rich 

information for quantification. Figure 7 shows the structure 
of derivatization reagent for amino acids [194]. According 
to the functional groups in metabolites, probes with specific-
ity can be designed to greatly enrich the content of targeted 
metabolome analysis.

5.1  Derivatization of Amino Metabolites

Aliphatic amino acids are extremely difficult to retain on 
RPLC, and even using the IPLC, the retention is still weak 
due to their zwitterionic ionization and broad range of iso-
electric points. It is worth considering that separating amino 
acids with different configurations of D- and L-types is also 
very challenging. A number of derivatization strategies have 
been developed for the analysis of amino acids, as shown by 
Scheme 3. Zhou et al. [195] used sulfonyl chloride to achieve 
chemical isotope labeling (CIL) for amino metabolites; 
Zhang et al. [196] utilized 6-aminoquinoline-N-hydroxysuc-
cinimide ester (6-AQC) to increase the detection sensitivity 
of amino metabolites by 50–1000 times. It is obvious that 
the separation of natural amino acids with HILIC methods 
needs pH control whereas, with AQC derivatization, the 
amino acids are not only better retained on column but also 
increased MS response significantly. Wang et al. [197] modi-
fied the AQC method by replacing the quinolone ring with 
isoquinoline ring (5-AIQC), which has higher pKa value and 
is capable of analyzing more than 120 amino metabolites. 
This method enhanced sensitivity nearly 10 times compared 
to AQC. Derivatization method could also provide a solution 
for separation and quantification of the D-/L-configuration 
of amino acids in peptides via a chiral benzaldehyde probe 
as has been demonstrated by Pan et al. [194]. The principle 
is based on the stereoselective reaction between different 
substrates and reagents (like RR-, SS- and RS-, etc.) having 
different thermodynamic energy.

The nucleobases are also considered as amino metabo-
lites because of their heterocycle containing nitrogen. 

Fig. 7  Structural design of 
an amino acid derivatization 
reagent.  (Ref. [194]), which is 
drawn by ChemBioDraw 2012
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Quantification of nucleosides, especially methyl-modified 
nucleosides, is of greater interest to epigenetic researchers. 
Huang et al. [198] used an acyl bromide as a derivatization 
reagent to react with the amino group and their ortho-imine 
carried on the ring of anthracene or pyrimidine. They suc-
cessfully quantified 5-methylcytidine (5-mC), 5-hydroxym-
ethylcytidine (5-hmC), 5-aldehyde cytidine (5-foC), 5-car-
boxycytidine (5-caC) based on this approach.

5.2  Derivatization of Carboxyl and Phosphorylated 
Metabolites

LC–MS analysis of phosphoric and carboxylic metabolites 
is even more challenging. This is because in addition to 
the poor hydrophobicity, these metabolites carry negative 
charges and the sensitivity of negative ion detection mode 
in mass spectrometry is lower.

Therefore, designing a suitable probe to sensitize these 
metabolites is more desirable. Derivatization strategies for 
carboxyl metabolites are shown in Scheme 4. Mark et al. 
[199] used EDC (1-(3-dimethylaminopropyl)-3-ethylcarbo-
diimide) to activate the carboxyl groups and then transfer 
them into quaternary ammonium salt by 4-APEBA, which 
greatly enhances the sensitivity and hydrophobicity. Tan 
et al. [200] used EDC activation and derivatization with 
benzyl hydroxylamine, the products of which have the 
same reporter ion m/z = 91 and the LOQ was 0.3–300 pg. 
Li group [201, 202] and Jiang et al. [203] derivatized fatty 
acids with dansylhydrazine and dansylpiperazine, respec-
tively, achieved LOQs ranging from 4–20 nM. In view of 

the instability of keto acids, Michael et al. [204] derivatized 
carbonyl groups with phenylhydrazine, then analyzed them 
with IPRPLC–MS method. This strategy uses the IPLC to 
achieve the retention of small molecular acids and increases 
the stability of keto acids at the same time. The sensitivity 
via transforming anionic organic acids to cationic derivatives 
to detect in positive ion mode is increased at least 100-fold.

Zeng et al. [205] achieved the detection of nucleotides 
(LOD ~ 0.1 fmol) by amidation of N,N-dimethylaniline with 
a phosphate group. Han et al. developed derivatization with 
3-amino-9-ethylcarbazole to increase the MS intensities with 
LODs of sugars and their phosphorylated products ranging 
from 0.06–1.37 pmol [206]. Liu et al. developed a diazo 
reagent labeling strategy, which showed high specificity and 
efficiency for the analysis of nucleotides. The sensitivities 
of 12 ribonucleotides increased by 12- to 174-fold with the 
LODs ranging from 0.07 to 0.41 fmol, which can realize 
the detection of these metabolites with only 8 cells [207]. 
In fact, without multiple phosphate groups, nucleotides with 
aromatic rings would have great retention behavior. Li et al. 
developed easy and simple derivatization with (trimethyls-
ily)diazomethane, which only transformed phosphate groups 
to their esters [208]. This reaction only took 3 min and the 
LOQs of dCMP, dCDP and dCTP are 0.0125, 0.0625 and 
0.25 pmol, respectively. The esterification of phosphate can 
reduce the activity of high-energy bonds of triphosphoryl-
ated metabolites, such as ATP. The stability of these metabo-
lites can be improved and it would be benefit for long-term 
analysis.

5.3  Derivatization of Carbonyl Containing 
Metabolites

Carbonyl containing metabolites include sugars, aldehyde, 
ketones, keto acids and so on. Most of the derivatization 
of saccharides take the approach of reacting aldehyde and 
ketone with hydrazine and O-hydroxylamine to form hydra-
zones and osazones [167, 209, 210], as shown in Scheme 5. 
N-Hydroxylamine is prone to Hoffmann rearrangement, 
hence subjected to structural confirmation; therefore, the 
experiments are carried out mostly using O-hydroxylamine. 
However, more than 99% of the sugars in aqueous exist as 
hemiacetal so that the derivatizing aldehyde group will 
take a longer time to promote the opening of the sugar ring. 

Scheme 3.  Derivatization of 
amino group in LC–MS analysis
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Zhang et al. [211] proposed a method of periodic acid oxi-
dation to assist the derivatization of sugars, however, the 
products are complex because the aldehyde groups at three 
positions could be oxidized simultaneously. The develop-
ment of open-loop strategies for sugars detection in mild 
conditions remains a huge challenge. It is worth noting that 
isomers of saccharides have different spatial structures of 
diols so that developing chiral probes for diol derivatization 
could open up new avenues for the detection of sugars.

Chemical labeling is also used for high-sensitive untar-
geted profiling in recent years. Although non-derivatized 
untargeted profiling has high coverage and no preference 
to metabolite detection, hydrophilic metabolites, especially 
polycarboxylic acids and nucleotides are low response in 
the negative mode of HRMS. In addition, some metabolites 
with low concentration in body fluids are often undetected in 
the untargeted analysis. The derivatization assisted profiling 
strategies to provide better detection for these metabolites by 
employing isotope labeling technique. Zhao et al. [212] use 
12C- and 13C-dansylhydrazine to profile carboxyl metabo-
lites by searching isotope ion pairs of metabolites. A total 
of 2266 peak pairs or metabolites were detected and posi-
tive identification of metabolites can also be achieved by the 
combination with neural loss scan and fragment ions scan.

Most derivatization methods can only be functionalized 
with a single chemical group, and there has been no deri-
vatization technology that could be universally applicable 
to all hydrophilic metabolites. Therefore, derivatization 
remained to be further improved to be suitable for high-
coverage untargeted profiling and biomarker discovery. A 
combination of different labeling methods in an integrated 
approach could provide a solution for the high coverage of 
detection required for untargeted profiling. Yuan et al. have 
used four derivatization reagents with their deuterium labe-
ling standards (total 8 reagents) to the untargeted analysis of 
amine metabolites, carbonyl metabolites, carboxyl metabo-
lites, and thiol metabolites. Over 2300 potential metabolites 

with 1388 positively or putatively identified were detected 
in fecal samples [213]. Zhao et al. also used a four-channel 
chemical isotope labeling approach, covering amine, phe-
nol, carbonyl, carboxyl and hydroxyl metabolites, further 
increased the range of metabolites, and a total of 7431 peaks 
were detected [214].

However, the parallel labeling reaction might induce 
interferences between each other, therefore labeling effi-
ciency needs to be considered. Additionally, many metabo-
lites have multiple functional groups, such as amino acids, 
nucleotides, which brings more complexity for identification 
and filtering. Isotope-labeling profiling also needs higher 
resolution mass spectrometers to increase the accuracy of 
peak alignments, however, these types of instruments could 
have relatively lower scan speed, posing difficulties for iden-
tification with MS/MS. It is therefore important to point out 
that chemical labeling assisted untargeted profiling needs 
much-devoted attention in the future.

6  Conclusion

The hydrophilic metabolites with high polarity in nature 
play an important role in life activities. For such small polar 
metabolites, analysis is often difficult due to its weak hydro-
phobicity, low ionization, wide concentration range, and 
high sample complexity. Major efforts have been made in the 
identification and quantification of hydrophilic metabolites, 
including non-labeling and chemical labeling approaches. In 
non-labeling strategies, new chromatographic technologies 
have been used to enhance the separation capability. HILIC 
is the most important method in separating hydrophilic 
metabolites, especially it can couple with RPLC to realize 
full coverage of both hydrophilic and hydrophobic metabo-
lites and lipids. However, the stability of retention time is 
still a problem and the peak shape of nucleotides in HILIC 
method are not satisfied. CE–MS is an essential approach 
that can realize single-cell detection and in situ analysis. 
It can detect polar metabolites, even ionized metabolites 
simultaneously with nano-level samples. IC–MS is similar 
as CE–MS which are capable for detection of strong ion-
ized metabolites. The development of the capillary column 
and ion suppressor can enhance the separation of isomeric 
polar analytes and increase MS signals. However, CE–MS 
and IC–MS need opposite elutes or columns for the analysis 
of cationic and anionic metabolites; the low flow rate leads 
to low efficiency and long runtime, which are not suitable 
for analysis of large-scale samples. These chromatogra-
phy technologies could not enhance the response in mass 
spectrometric analysis, which prompts the development of 
chemical labeling methods. Chemical labeling strategies use 
derivatization reagents to transform these small metabo-
lites to aromatic derivatives with high-retention in LC and 

Scheme 5.  Derivatization of Carbonyl group in LC–MS analysis
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high-sensitivity in MS. Special derivatization reagents have 
been designed to react with metabolites containing different 
functional groups, including amines, carboxyl, etc. Finally, 
chemical labeling methods have great potential for untar-
geted profiling, however, high throughput, high coverage and 
high-efficiency derivatization strategies are still lacking and 
hence urgently needed.
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