Extractables Detection in Rubber Plug Products

Introduction

For E&L researchers, injections and injectable suspensions are high & medium risk products, for which the most complex components are thermoplastic elastomers. A rubber plug is commonly used in cillin bottles, manufactured with polyisoprene rubber, butyl rubber, halogenated butyl rubber and many otherrubber-like materials.

There is no doubt that HRMS is more commonly used for E&L compound screening and identification, partially simplified with AET value (Analytical Evaluation Threshold), which is based on the SCT and is the threshold *at-or-above* which a chemist should begin to identify a particular leachable or extractable for potential toxicological assessment.

Considering the regulatory detection requirements and applicable coverage, an LC/TQ system is the gold standard for targeted compound detection and quantitation where a MRM method can be used for E&L research.

In this study, we investigated the detection of 35 compounds in rubber plugs using an Agilent 6470 triple quadrupole LC/MS system (LC/TQ). These compounds include antioxidants, slip agents, and vulkacits, which are the most conventional and widely used additives in the manufacture for elastomers.

This method aims to test the feasibility of LC/TQ technology for the measurement of E&L, to help manufacturers to evaluate their elastomer products and set up quality control standards - at relatively lower cost than HRMS platforms.

The 6470 triple quadrupole LC/MS coupled to the 1290 Infinity II HPLC

Experimental

Sample preparation

For 1g of rubber stopper sample,

- 1. Cut into pieces with a diameter of about 5mm
- 2. Microwave extract with 10ml of dichloromethane at 40 ° C for 45min,
- 3. Dry with nitrogen then dissolve with 1ml of isopropanol
- 4. Solvent extracts are injected directly into the LC-TQ system

Agilent 1290 Infinity II	UHPLC System
Column	Agilent ZORBAX RRHD Eclipse Plus C8, 3.0* 150 mm, 1.8 µm
Column temperature	45 °C

Injection volume	2 μL
Autosampler temp	4 °C
Mobile phase	A) Water(4.5mM NH₄Formate + 0.5mM NH₄F + 0.1% formic acid)
	B) 80%Methanol + 20% isopropanol (4.5mM NH₄Formate + 0.5mM NH₄F + 0.1% formic acid)
Flow rate	0.4 mL/min
Stop time	25min

Agilent 6470 LC/TQ System					
Drying gas	325 °C				
temperature					
Drying gas flow	10 L/min				
Sheath gas	350 °C				
temperature					
Sheath gas flow	11 L/min				
Nebulizer pressure	45 psi				
Capillary voltage	4000 V(pos)/3500V(neg)				
Nozzle voltage	0 V(+)/500 V(-)				
Delta EMV	200 V				
Polarity:	Positive/Negative				

Chang Jiang¹, Pei-bin Hu¹, Lv Lei², Chan Jimmy³ ¹ Agilent, Chengdu, China; ²Agilent, Wuhan, China, ³Agilent, Taipei, Taiwan

Experimental

Trap column configuration

E&L compounds, especially antioxidants, were found as contamination at very low concentrations in mobile phase solvents, which may give false positive results if not taken into account. So, the use of a C18 trap column (Agilent ZORBAX Eclipse Plus C18, 2.1* 50 mm, 1.8 µm) should be situated between the Binary Pump and the Autosampler. The addition of a trap column is used to delay interferences from the mobile phase, which will be eluted about 0.5min later than target compounds of interest.

Fig 1. Delayed peak by trap column

Fig 2. Reproducibility of binary pump pressure profiles

Table 1. MRM list for 35 E&L compounds

Compound Name	Precursor Ion	Product Ion	Polarity	Compound Name	Precursor Ion	Product Ion	Polarity
2.4-Di-tert-	205.1	189.1			622.3	510.2	Positive
butylphenol	205.1	173.1	Negative	Irgatos 126	622.3	223	
9-	282.3	265.3	D		1194.8	729.3	Positive
Octadecenami de	282.3	247.3	Positive	Irganox 1010	1194.8	563.2	
Deventhismele	136	109	Desitive	Irganox 1076	548.5	149	Positive
Benzothiazole	136	65	Positive		548.5	107	
	219.1	219	N 1	lrganox 1310	296.2	167	Positive
BHT	219.1	203.1	Negative		296.2	107	
	235.2	179	Devili	1000	792.6	569.4	Positive
BH1-CHO	235.2	57.1	Positive	Irganox 1330	792.6	219.1	
	251.2	195			647.5	441	Positive
BH1-COOH	251.2	57.1	Positive	Irganox 168	647.5	347	
	235	217.2		Irganox 245	604.4	263.1	Positive
RH1-OH	235	160.1	Negative		604.4	177.1	
Bis(diisobutylt	409.2	172.1	Positive	Irganox 246	280.3	202	Positive
hiocarbamoyl) disulfide	409.2	116			280.3	77	
	227	212.1	Nesset	Irganox 259	656.5	415.2	Positive Positive
ВРА	227	133.1	Negative		656.5	107	
0.0000000000000000000000000000000000000	358.3	229		have a 0114	801.6	784.5	
Cyanox 2246	358.3	121	Positive	Irganox 3114	801.6	219.1	
Overey 405	386.3	257.1	Desitive	MBT	168	109	Positive
Cyanox 425	386.3	191.1	Positive		168	77	
Dipentamethyl	321	160			333	166.9	Positive
disulfide	321	128	Positive	MB12	333	123	
Dipentamethyl	385	204	Desitive	N,N'-(1,3- Phenylene)dimal eimide	286.1	269	Positive
tetrasulfide	385	172	Positive		286.1	241	
Disulfinance	297.1	116	Desitive	Palmitic acid	255.2	255	Negative
Disulfiram	297.1	88	Positive	Stearic acid	283.2	283	Negative
F uero and de	338.3	321		itive Tetrabutylthiura m disulphide	409.2	172.1	Positive
Erucamide	338.3	303	Positive		409.2	116	
511 700	442.4	219.1		T 1 ·	241	119.9	Positive
Ethanox 702	442.4	163.1	Positive	Iniram	241	88	
Ethoracy 700	264.2	219.1	Positive	Tinuvin 770	481.4	140.1	Positive
Ethanox 703	264.2	203.1			481.4	123.1	

ASMS 2020 DE.5903587963 ThP 564

Agilent

Results and Discussion

Sample test result

We have tested 3 samples of rubber plugs sold in the market. With the extraction conditions described here, all samples were found to leech antioxidants, slip agents and vulkacits.

Table 2. Sample concentrations of E&Ls found in rubber plug products

Compound	Sample A (µg/kg)	Sample B (µg/kg)	Sample C (µg/kg)	
Ethanox 703	14.3	ND	9.6	
Disulfiram	ND	ND	98.8	
BHT-OH	183.6	ND	ND	
BHT-COOH	454.7	152.1	35.8	
BHT-CHO	3012.6	890.8	517.4	
Irganox 1310	15	101.9	3062.7	
Irganox 246	ND	ND	62830	
9-Octadecenamide	80.6	109.7	12866.1	
Cyanox 2246	ND	41.7	140.2	
Palmitic acid	16660.9	3820.8	10307.8	
Stearic acid	12354.5	10506.8	9873.2	
Erucamide	ND	ND	6303.8	
Irganox 3114	20.6	3.6	13.4	
Irganox 1010	ND	213.5	23649.7	
Irganox 1330	ND	ND	12.1	
Irganox 1076	329.6	11941.3	5324.5	
Irganox 168	ND	ND	28481.5	

Discussion

Antioxidants 1010, 1076, BHT-CHO, palmitic acid, and stearic acid exist in isopropanol at lower concentration than methanol (Table 3), so we suggest isopropanol as the dissolved solvent for extracted samples. Besides that, pipette tips also will release compounds such as Erucamide in organic solvents. It is highly recommended that clean tips with dichloromethane 2 to 3 times before pipetting.

Even with above precautions, for party of the antioxidants and slip agents, positive response can also be observed in MRM chromatogram when injecting different blanks, coupling with multiple solvent washing for needle and needle seat. It suggests those carry over response leached from rubber seal in valve system of autosampler module.

Table 3. Peak area of contaminants found in various solvent blanks

Blank Respond	BHT- CHO	Palmitic acid	Stearic acid	Erucami de	Irganox 1010	Irganox 1076	Irganox 168	Irganox 1310
Methanol	2187	2136	4625	23667	640	3911	322	426
lsopropan ol	658	931	1031	79312	613	1514	217	373
2µl of air	488	770	1015	78602	587	670	235	370
No injection	362	563	709	70997	502	282	416	305

Conclusions

- 35 E&L compounds (antioxidants, slip agents, and vulkacits) were detected in rubber plug samples.
- The use of a C18 trap column placed between the Binary Pump and Autosampler is important to avoid the quantitation of false positives.
- Further precautions must be taken when considering dilution solvents, blank solvents, and lab equipment.

