

土壤 CO₂通量传感器|eosFD

概述

由 Eosense 制造的 eosFD 使用专利的强制扩散 (FD) 技术,使用 NDIR 传感器和小型内部隔膜泵直接测量土壤 CO2通量。自带数据记录功能,可独立工作;另外,可以模拟或数字信号接入 Campbell Scientific 数据采集器。该传感器与 Campbell Scientific 涡动协方差系统相得益彰。随附的 eosLink 软件可以直接进行传感器连接、配置和收集数据。

优点和特点

- ◇ 零空间约束
- ◇ 真正便携
- ◇ 高时间分辨率
- ◇ 防水
- ◇ 自带数据记录仪
- ◇ 兼容串行/模拟数据采集器
- ◆ 低功耗
- ◇ 无外部活动部件
- ♦ 与 EasyFlux®DL 无缝集成
- ◆ 使用 EasyFlux®Web 进行实时数据监控

详细描述

eosFD 是一种独立的土壤 CO2 通量传感器,包含一个 NDIR 传感器,一个内部数据记录仪和一个小型隔膜泵。eosFD 使用 Eosense 的专利强制扩散技术直接测量土壤 CO2 通量。

传统上,使用封闭腔室测定土壤表面的气体通量,在测量期间通过"蓄积室"捕获气体。强制扩散是一种基于膜的稳态方法来测量气体流量,在流入腔室的气体和通过膜流出腔室的气体之间建立平衡,无需移动任何外部腔室。

通过仔细表征膜的扩散特性,eosFD 腔室气体浓度直接与气体通量率建立关联。基本上,该膜限制气体流出腔室的量是已知的,因此,通过将内部浓度与仪器外部的浓度进行比较,可以计算通量率。自动化腔室需要升起、降落到土壤表面,而强制扩散方法不需要外部移动部件,使其能够在最恶劣的气候条件下长时间、无干预地运行。

eosFD 土壤 CO2 通量传感器亮点

- 真正便携

适用蓄电池、太阳能或风能系统可满足 eosFD 的最低功率要求。它的重量仅为 1.6 千克, 因此可以随时随地获取土壤气体通量数据。

- 零空间约束

eosFD的独立设计,在一个坚固的包装中进行板载二氧化碳浓度分析和数据记录,意味着您可以部署跨越数米到数千米空间覆盖范围的阵列。

- 直接通量测量

传统腔室法测量通量需先收集各种数据,然后将这些数据整合获取土壤气体通量值。使用 eosFD 无需后处理,可直接输出高分辨率通量。

- 数据获取自由

可使用随附的 eosLink-FD 软件从 eosFD 的内部存储中下载土壤气体通量值,也可以模拟接入现有站点数据采集器,与其他数据源轻松集成。

产品规格

工作温度范围: -20°至+50°C(-4°至+122°F)

工作功率: <1.6 W(平均值)

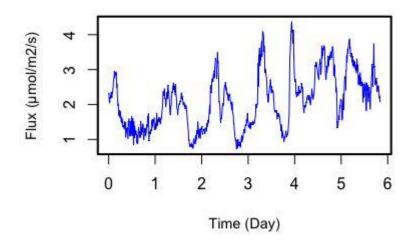
工作电压: 12 Vdc

模拟输出:0至5 Vdc

数据容量:65,000 次测量

测量速率:5分钟到1天(用户指定)

通量范围: 0至20µmol// m2/s


通量分辨率: <0.2µmol/ m2/s

尺寸:10.2 x 25 厘米 (4 x 9.8 英寸)

重量:1.6 干克(3.5 磅)

数据格式:

Month	Day	Year	Time	Flux	Temperature (C)	CO2 Soil (ppm)	CO2 Soil STD (ppm)	CO2 ATM (ppm)	CO2 ATM STD (ppm)	Mode
	2	1	17 22:48:27	0	25	529.43	6.747	532.59	5.243	0
	2	1	17 22:50:00	0.31	25	516.07	7.461	523.04	4.228	0
	2	1	23:00:00	0.08	25	513.25	6	517.57	6.102	0
	2	1	23:10:00	0	25	502.73	5.893	507.93	5.863	0
	2	1	17 23:20:00	0	25.2	497.1	5.636	503.09	6.984	0
	2	1	17 23:30:00	0.62	25.6	497.29	7.78	502.61	2.88	0
	2	1	17 23:40:00	0.31	26.2	499.76	7.308	500.72	3.409	0
	2	1	17 23:50:00	1.3	27	499.24	6.646	507.07	4.751	0
	2	2	0:00:00	1.5	27.8	499.2	7.602	505.02	5.64	0
	2	2	0:10:00	2.46	28.7	502.31	5.325	503.31	5.19	0
	2	2	0:20:00	2.05	29.4	492.26	7.268	500.66	6.691	0

