

# 中华人民共和国国家环境保护标准

HJ 1074-2019

# 水质 三丁基锡等 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法

Water quality—Determination of four organic tin compounds including tributyltin—Liquid chromatography/inductively coupled plasma mass spectrometry

(发布稿)

本电子版为发布稿。请以中国环境出版集团出版的正式标准文本为准。

2019-12-31 发布

2020-06-30 实施

生 态 环 境 部 发布

# 目 次

| 前  | 言                       | ii |
|----|-------------------------|----|
|    | 适用范围                    |    |
|    | 规范性引用文件                 |    |
| 3  | 方法原理                    | 1  |
| 4  | 试剂和材料                   | 1  |
| 5  | 仪器和设备                   | 2  |
| 6  | 样品                      | 3  |
| 7  | 分析步骤                    | 4  |
| 8  | 结果计算与表示                 | 5  |
| 9  | 精密度和准确度                 | 6  |
| 10 | 质量保证和质量控制               | 7  |
| 11 | 废物处理                    | 7  |
| 12 | 注意事项                    | 7  |
| 附表 | 录 A (规范性附录) 方法的检出限和测定下限 | 8  |
| 附表 | 录 B (资料性附录) 方法的精密度和准确度  | 9  |

# 前言

为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民 共和国海洋环境保护法》,保护生态环境,保障人体健康,规范水中三丁基锡等4种有机锡化 合物的测定方法,制定本标准。

本标准规定了地表水、地下水、海水、生活污水和工业废水中三丁基锡等4种有机锡化 合物的液相色谱-电感耦合等离子体质谱法。

本标准的附录A为规范性附录,附录B为资料性附录。

本标准为首次发布。

本标准由生态环境部生态环境监测司、法规与标准司组织制订。

本标准起草单位:辽宁省大连生态环境监测中心。

本标准验证单位:国家环境分析测试中心、国家海洋环境监测中心、辽宁省沈阳生态环境监测中心、抚顺市环境监测中心站、大连市食品检验所和大连市产品质量检测研究院。

本标准生态环境部2019年12月31日批准。

本标准自2020年6月30日起实施。

本标准由生态环境部解释。

# 水质 三丁基锡等 4 种有机锡化合物的测定

# 液相色谱-电感耦合等离子体质谱法

警告:本方法所使用的试剂和标准溶液具有腐蚀性和毒性,试剂配制和样品前处理过程 应在通风橱中进行,操作时应按照规定要求佩戴防护器具,避免接触皮肤和衣物。

#### 1 适用范围

本标准规定了测定水中三丁基锡等 4 种有机锡化合物的液相色谱-电感耦合等离子体质谱法。

本标准适用于地表水、地下水、海水、生活污水和工业废水中二丁基锡、三丁基锡、二苯基锡、三苯基锡的测定。

当采用液液萃取法,取样量为  $1000\,\mathrm{ml}$ ,浓缩体积为  $1.0\,\mathrm{ml}$ ,进样量为  $20.0\,\mathrm{\mu l}$  时,方法 检出限为  $0.004\,\mathrm{\mu g/L}\sim0.005\,\mathrm{\mu g/L}$ ,测定下限为  $0.016\,\mathrm{\mu g/L}\sim0.020\,\mathrm{\mu g/L}$ ;当采用直接进样法,进样量为  $20.0\,\mathrm{\mu l}$  时,方法检出限为  $3\,\mathrm{\mu g/L}\sim6\,\mathrm{\mu g/L}$ ,测定下限为  $12\,\mathrm{\mu g/L}\sim24\,\mathrm{\mu g/L}$ 。详见附录 A。

#### 2 规范性引用文件

本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。

- HJ 91.1 污水监测技术规范
- HJ 442 近岸海域环境监测规范
- HJ 493 水质 样品的保存和管理技术规定
- HJ/T 91 地表水和污水监测技术规范
- HJ/T 164 地下水环境监测技术规范

#### 3 方法原理

样品中的有机锡化合物经液液萃取法富集或直接进样后,用液相色谱柱分离,电感耦合等离子体质谱仪测定。根据保留时间定性,外标法定量。

#### 4 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯试剂,实验用水为新制备的纯水或 蒸馏水。

- 4.1 乙腈 (CH<sub>3</sub>CN): 液相色谱纯。
- 4.2 乙酸 (CH<sub>3</sub>COOH): 优级纯。

- 4.3 三乙胺 (C<sub>6</sub>H<sub>15</sub>N): 优级纯。
- 4.4 甲醇 (CH<sub>3</sub>OH): 液相色谱纯。
- 4.5 丙酮 (CH<sub>3</sub>COCH<sub>3</sub>): 液相色谱纯。
- 4.6 二氯甲烷 (CH<sub>2</sub>Cl<sub>2</sub>): 农残级。
- 4.7 氯化钠 (NaCl): 优级纯。在 400℃下灼烧 2 h,冷却后于干燥器中保存。
- 4.8 盐酸: ρ (HCl) =1.19 g/ml, 优级纯。
- 4.9 盐酸溶液: 1+1。

量取 50.0 ml 盐酸 (4.8), 用实验用水稀释至 100 ml。

4.10 盐酸溶液: 1+19。

量取 50.0 ml 盐酸 (4.8), 用实验用水稀释至 1000 ml。

4.11 盐酸溶液: 1+99。

量取 1.0 ml 盐酸 (4.8), 用实验用水稀释至 100 ml。

4.12 无水硫酸钠 (Na<sub>2</sub>SO<sub>4</sub>)。

在 400℃下灼烧 4 h, 冷却后于干燥器中保存。

4.13 有机锡(二丁基锡、三丁基锡、二苯基锡和三苯基锡)标准贮备液:  $\rho=1000 \text{ mg/L}$ 。

准确称取 13.05 mg(精确到 0.01 mg)二丁基氯化锡( $C_8H_{18}Cl_2Sn$ )、11.22 mg 三丁基氯化锡( $C_{12}H_{27}ClSn$ )、12.60 mg 二苯基氯化锡( $C_{12}H_{10}Cl_2Sn$ )、11.01 mg 三苯基氯化锡( $C_{18}H_{15}ClSn$ )标准物质,溶于甲醇(4.4)或丙酮(4.5)中,定容至 10.00 ml。每升贮备液中含有 1000 mg 的二丁基锡、三丁基锡、二苯基锡和三苯基锡。在-18℃以下冷冻可保存 1年。也可直接购买有证标准溶液。

注: 也可购买醋酸有机锡等其它有机锡标准物质配制标准贮备液。

4. 14 有机锡(二丁基锡、三丁基锡、二苯基锡和三苯基锡)标准使用液:  $\rho$ =10.0 mg/L。 量取 1.00 ml 有机锡(二丁基锡、三丁基锡、二苯基锡和三苯基锡)标准贮备液(4.13)用乙腈(4.1)定容至 100 ml。在-18℃以下冷冻可保存 20 d。

4.15 流动相。

分别量取 65.0 ml 乙腈 (4.1) 、12.0 ml 乙酸 (4.2) 和 0.05 ml 三乙胺 (4.3) 置于 100 ml 棕色玻璃容量瓶中,用实验用水定容至 100 ml。

- 4.16 聚四氟乙烯微孔滤膜: 0.22 μm。
- 4.17 氩气: 纯度不低于 99.99%。
- 4.18 外加气: 80% 氯气和 20% 氧气混合气 (V/V), 氯气和氧气的纯度均不低于 99.99%。

#### 5 仪器和设备

除非另有说明,分析时均使用符合国家标准的A级玻璃量器。

- 5.1 电感耦合等离子体质谱仪:配备外加气控制单元、配备有机排废管的雾化器、铂采样锥、铂截取锥及有机专用矩管。
- 5.2 液相色谱仪。
- 5.3 色谱柱: 填料粒径为 5.0 μm, 柱长 250 mm, 内径 4.6 mm 的 C<sub>18</sub>柱,或其它等效色谱

柱。

- 5.4 浓缩装置:旋转蒸发装置、KD浓缩器、氮吹仪或其它性能相当的设备。
- 5.5 分液漏斗: 2L。
- 5.6 棕色样品瓶: 2.0 ml。
- 5.7 一般实验室常用仪器和设备。

#### 6 样品

#### 6.1 样品的采集与保存

按照 HJ 91.1、HJ/T 91、HJ/T 164、HJ 442 和 HJ 493 的相关规定进行采样布点和样品采集。

用棕色玻璃瓶采集 2.5 L 样品,加入适量盐酸溶液 (4.9),调节样品 pH≤2。样品避光、4℃以下冷藏运输和保存。采用萃取法时,需在 24 h 内完成样品萃取,萃取液可保存 7 d;采用直接进样法时,样品应在 24 h 内分析完毕。

#### 6.2 试样的制备

#### 6.2.1 液液萃取法

#### 6.2.1.1 萃取

将样品恢复至室温,确认样品  $pH \le 2$ 。量取  $1000 \, \text{ml}$ (样品浓度较高时,减少取样体积)样品于分液漏斗(5.5)中,加入  $30 \, \text{g}$  氯化钠(4.7)摇匀。加入  $60 \, \text{ml}$  的二氯甲烷(4.6),震荡  $5 \, \text{min}$ ,静置分层,收集有机相,再用  $60 \, \text{ml}$  二氯甲烷(4.6)萃取两次,合并萃取液,经无水硫酸钠(4.12)脱水,待浓缩。

注1: 如果萃取过程中乳化现象严重,可以采用包括搅动、离心、玻璃棉过滤、冷冻等方法破乳。

注 2: 海水样品可适当减少氯化钠(4.7)的加入量。

#### 6.2.1.2 浓缩与溶剂转换

用浓缩装置(5.4)将萃取液浓缩至约0.5 ml,加入1 ml的乙腈(4.1)并充分混匀,浓缩至约0.5 ml,再重复加乙腈(4.1)浓缩2次,最后用流动相(4.15)定容至1.0 ml。经聚四氟乙烯微孔滤膜(4.16)过滤后,置于棕色样品瓶(5.6)中,待测。

注:浓缩过程溶剂蒸干对目标物的回收率影响较大。

#### 6.2.2 直接进样法

将样品恢复至室温,用盐酸溶液(4.9)调节样品 pH≤2。取 1.0 ml 样品用聚四氟乙烯 微孔滤膜(4.16)过滤,滤液收集在棕色样品瓶(5.6)中,再取 1.0 ml 乙腈(4.1)洗涤该滤膜,洗涤液合并在棕色样品瓶(5.6)中,待测。

#### 6.3 空白试样的制备

以实验用水代替样品,按照与试样的制备(6.2)相同的步骤制备空白试样。

#### 7 分析步骤

#### 7.1 仪器参考条件

#### 7.1.1 液相色谱参考条件

流动相: V(乙腈):V(水):V(乙酸)=65:23:12,含三乙胺 0.05%。

柱温: 18℃~30℃。 流速: 0.8 ml/min。

进样体积: 20.0 µl。

#### 7.1.2 电感耦合等离子体质谱参考条件

电感耦合等离子体质谱(ICP-MS)参考条件见表 1。

检测元素

参 数 数 值 射频功率 1600 W 采样深度(矩管与样品锥之间的距离) 9.0 mm 等离子气/冷却气(氩气) 15.0 L·min-1 辅助气(氩气) 0.00 L·min-1 载气(氩气) 0.55 L·min-1 外加气 (氩氧混合气) 0.25 L·min-1 1.0 mm 采样锥直径 截取锥直径 0.4 mm 采样模式 时间分辨 采集时间 1200 s

 $^{116}$ Sn  $^{118}$ Sn  $^{120}$ Sn

表 1 ICP-MS 工作条件及参数

#### 7.2 标准曲线的建立

#### 7.2.1 标准系列的制备

#### 7.2.1.1 液液萃取法标准系列制备

将有机锡(二丁基锡、三丁基锡、二苯基锡和三苯基锡)标准使用液(4.14)用流动相(4.15)稀释成  $10.0~\mu g/L$ 、 $20.0~\mu g/L$ 、 $50.0~\mu g/L$ 、 $100~\mu g/L$ 、 $150~\mu g/L$ 、 $200~\mu g/L$  的标准系列,贮存在棕色样品瓶(5.6)中。

#### 7.2.1.2 直接进样法标准系列制备

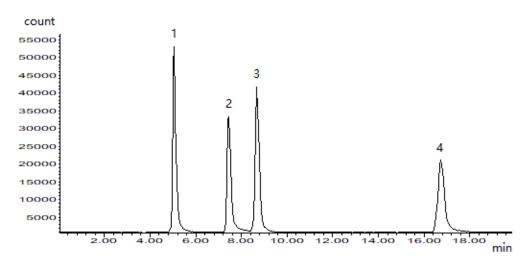
将有机锡(二丁基锡、三丁基锡、二苯基锡和三苯基锡)标准使用液(4.14)用盐酸溶液(4.11)稀释成  $10.0~\mu g/L$ 、 $20.0~\mu g/L$ 、 $50.0~\mu g/L$ 、 $100~\mu g/L$ 、 $150~\mu g/L$ 、 $200~\mu g/L$  的标准系列,贮存在棕色样品瓶(5.6)中。

#### 7.2.2 标准曲线的建立

按照仪器参考条件(7.1)进行测定,以目标物浓度为横坐标,与其对应的响应值为纵坐标,建立标准曲线。

#### 7.3 试样的测定

量取 20.0 μl 试样,按照与标准曲线建立相同的步骤进行测定。


#### 7.4 空白试验

量取 20.0 µl 空白试样,按照与样品分析(7.3)相同步骤进行测定。

#### 8 结果计算与表示

#### 8.1 定性分析

根据保留时间定性。4种有机锡的标准色谱图见图 1。



1—二苯基锡; 2—二丁基锡; 3—三苯基锡; 4—三丁基锡。

图 1 4 种有机锡的标准色谱图

### 8.2 结果计算

#### 8.2.1 萃取法

样品中有机锡质量浓度,按照公式(1)进行计算。

$$\rho_i = \frac{\rho_i' \times V}{V_0} \tag{1}$$

式中:  $\rho_i$  ——样品中有机锡的质量浓度,  $\mu$ g/L;

 $\rho_i'$ ——由标准曲线计算的试样中有机锡的质量浓度, $\mu g/L$ ;

V——试样定容体积, ml;

 $V_0$ ——样品体积,ml。

#### 8.2.2 直接进样法

样品中有机锡质量浓度,按照公式(2)进行计算。

$$\rho_i = \rho_i' \times D \times 2 \tag{2}$$

式中:  $\rho_i$  ——样品中有机锡的质量浓度,  $\mu$ g/L;

 $\rho_i'$ ——由标准曲线计算的试样中有机锡的质量浓度, $\mu$ g/L;

D——样品稀释倍数。

#### 8.3 结果表示

测定结果小数位数与方法检出限保持一致,最多保留三位有效数字。

#### 9 精密度和准确度

#### 9.1 精密度

6 家实验室对 4 种有机锡加标浓度为 0.100 μg/L 的地表水、0.020 μg/L 的地下水和 0.020 μg/L 的海水样品采用萃取法进行 6 次重复测定:实验室内相对标准偏差范围分别为 1.6%~5.1%、2.4%~9.9%和 2.5%~9.8%,实验室间相对标准偏差范围分别为 2.0%~3.5%、3.1%~7.8%和 4.6%~13%,重复性限范围分别为 0.007 μg/L~0.010 μg/L、0.003 μg/L~ 0.004 μg/L 和 0.003 μg/L~0.005 μg/L,再现性限范围分别为 0.008 μg/L~0.011 μg/L、0.003 μg/L~0.005 μg/L 和 0.003 μg/L~0.008 μg/L。

6 家实验室对 4 种有机锡加标后浓度为 100 μg/L 的生活污水和 200 μg/L 工业废水样品 采用直接进样法进行 6 次重复测定:实验室内相对标准偏差范围分别为 0.8%~5.5% 和 0.9%~4.6%,实验室间相对标准偏差范围分别为 3.2%~12%和 1.3%~9.4%,重复性限范围 分别为 4 μg/L~8 μg/L 和 10 μg/L~15 μg/L,再现性限范围分别为 10 μg/L~37 μg/L 和 15 μg/L~47 μg/L。

精密度的具体数据见附录 B。

#### 9.2 准确度

6 家实验室对 4 种有机锡加标浓度为 0.100  $\mu$ g/L 的地表水、0.020  $\mu$ g/L 的地下水和 0.020  $\mu$ g/L 的海水采用萃取法进行测定: 加标回收率范围分别为 74.6%~90.3%、68.5%~93.0%和 69.0%~109%,加标回收率最终值范围分别为 77.5% ±4.8%~86.1% ±5.0%、78.8% ±12.4%~85.9% ±8.4%和 77.3% ±7.2%~90.3% ±24.2%。

6 家实验室对 4 种有机锡加标浓度为 100 μg/L 的生活污水和 200 μg/L 工业废水样品采

用直接进样法进行测定:加标回收率范围分别为  $80.4\% \sim 106\%$  和  $80.5\% \sim 102\%$ ,加标回收率最终值范围分别为  $86.4\% \pm 5.6\% \sim 93.7\% \pm 13.2\%$  和  $86.4\% \pm 16.6\% \sim 94.3\% \pm 7.0\%$ 。

准确度的具体数据见附录 B。

#### 10 质量保证和质量控制

#### 10.1 空白试验

每 20 个样品或每批样品 (≤20 个/批) 至少做一个空白试验, 测定结果应低于方法的检出限。

#### 10.2 校准

标准曲线的相关系数 r≥0.990,每 20 个样品或每批样品(≤20 个/批)测定一个曲线中间校核点,其测定结果与标准曲线相应点浓度的相对误差应在±20%之间。

#### 10.3 平行样

每 20 个样品或每批样品 (≤20 个/批) 至少测定一个平行双样,平行双样测定结果的相对偏差应≤20%。

#### 10.4 基体加标

每 20 个样品或每批样品 (≤20 个/批) 至少测定一个基体加标样品,其加标回收率范围 应在 60%~120%之间。

#### 11 废物处理

实验中产生的废物应集中收集,并做好相应标识,委托有资质的单位进行处理。

#### 12 注意事项

- 12.1 当仪器信号本底较高时,应检查乙腈和用于配制流动相的试剂,必要时进行更换。
- 12.2 所有玻璃器皿使用前,均需使用盐酸溶液(4.10)浸泡24h以上。

#### 附录 A

#### (规范性附录)

#### 方法的检出限和测定下限

萃取法各目标化合物的检出限和测定下限见表 A.1。

表 A. 1 萃取法检出限和测定下限

| 序号 | 化合物名称 | 检出限(μg/L) | 测定下限(μg/L) |
|----|-------|-----------|------------|
| 1  | 二苯基锡  | 0.004     | 0.016      |
| 2  | 二丁基锡  | 0.005     | 0.020      |
| 3  | 三苯基锡  | 0.004     | 0.016      |
| 4  | 三丁基锡  | 0.004     | 0.016      |

直接进样法各目标化合物的检出限和测定下限见表 A.2。

表 A. 2 直接进样法检出限和测定下限

| 序号 | 化合物名称 | 化合物名称 检出限 (μg/L) |    |
|----|-------|------------------|----|
| 1  | 二苯基锡  | 4                | 16 |
| 2  | 二丁基锡  | 6                | 24 |
| 3  | 三苯基锡  | 3                | 12 |
| 4  | 三丁基锡  | 3                | 12 |

## 附录 B

#### (资料性附录)

## 方法的精密度和准确度

#### B. 1 萃取法

萃取法精密度汇总结果见表 B.1。

表 B. 1 萃取法精密度

| 序号  | 化合物              | 样品  | 浓度     | 实验室内相对标  | 实验室间相对标  | 重复性限 r | 再现性限 R |
|-----|------------------|-----|--------|----------|----------|--------|--------|
| 万 5 | 名称               | 类型  | (µg/L) | 准偏差范围(%) | 准偏差范围(%) | (µg/L) | (µg/L) |
|     | — <del>11:</del> | 地表水 | 0.100  | 2.4~5.1  | 3.1      | 0.010  | 0.011  |
| 1   | 二苯<br>基锡         | 地下水 | 0.020  | 3.4~9.9  | 7.8      | 0.003  | 0.005  |
|     | 至功               | 海水  | 0.020  | 4.8~8.5  | 4.6      | 0.003  | 0.003  |
|     | 二丁               | 地表水 | 0.100  | 2.4~4.9  | 2.9      | 0.009  | 0.010  |
| 2   | 基锡               | 地下水 | 0.020  | 2.9~9.9  | 4.9      | 0.004  | 0.004  |
|     | 至功               | 海水  | 0.020  | 7.5~9.8  | 13       | 0.005  | 0.008  |
|     | 三苯               | 地表水 | 0.100  | 1.6~3.7  | 3.5      | 0.007  | 0.011  |
| 3   | 基锡               | 地下水 | 0.020  | 2.4~8.8  | 5.9      | 0.003  | 0.004  |
|     | 至功               | 海水  | 0.020  | 2.5~9.4  | 8.7      | 0.004  | 0.006  |
|     |                  | 地表水 | 0.100  | 1.9~3.7  | 2.0      | 0.007  | 0.008  |
| 4   | 三丁基锡             | 地下水 | 0.020  | 3.6~8.6  | 3.1      | 0.003  | 0.003  |
|     | 坐彻               | 海水  | 0.020  | 3.9~7.9  | 9.3      | 0.003  | 0.005  |

萃取法准确度汇总结果见表 B.2。

表 B. 2 萃取法准确度

| 序 | 化合物        | 样品  | 实际样品浓   | 加标后样品    | 加标回收率     | $\frac{1}{D}(0/1)$ | $S_{\overline{P}}(\%)$ | $\frac{1}{D}$                 |
|---|------------|-----|---------|----------|-----------|--------------------|------------------------|-------------------------------|
| 号 | 名称         | 类型  | 度(µg/L) | 浓度(µg/L) | 范围 (%)    | $\overline{P}(\%)$ |                        | $P \pm 2S_{\overline{p}}(\%)$ |
|   | 二苯         | 地表水 | ND      | 0.100    | 74.6~80.6 | 77.5               | 2.4                    | 77.5±4.8                      |
| 1 | 基锡         | 地下水 | ND      | 0.020    | 68.5~86.0 | 78.8               | 6.2                    | $78.8 \pm 12.4$               |
|   | 至功         | 海水  | ND      | 0.020    | 73.5~82.0 | 77.3               | 3.6                    | 77.3±7.2                      |
|   | 二丁         | 地表水 | ND      | 0.100    | 83.1~90.3 | 86.1               | 2.5                    | $86.1 \pm 5.0$                |
| 2 | 基锡         | 地下水 | ND      | 0.020    | 78.5~90.0 | 85.9               | 4.2                    | 85.9±8.4                      |
|   |            | 海水  | ND      | 0.020    | 71.5~109  | 90.3               | 12                     | $90.3 \pm 24$                 |
|   | 三苯         | 地表水 | ND      | 0.100    | 82.3~90.3 | 86.0               | 3.0                    | 86.0±6.0                      |
| 3 | 基锡         | 地下水 | ND      | 0.020    | 79.5~93.0 | 83.7               | 5.0                    | $83.7 \pm 10.0$               |
|   | 圣物         | 海水  | ND      | 0.020    | 76.5~97.0 | 88.2               | 7.6                    | $88.2 \pm 15.2$               |
|   | 1          | 地表水 | ND      | 0.100    | 77.9~82.2 | 80.2               | 1.6                    | $80.2 \pm 3.2$                |
| 4 | 三丁<br>基锡   | 地下水 | ND      | 0.020    | 79.5~86.5 | 84.8               | 2.7                    | 84.8±5.4                      |
|   | <b>基</b> 物 | 海水  | ND      | 0.020    | 69.0~89.0 | 80.6               | 7.5                    | $80.6 \pm 15.0$               |

#### B. 2 直接进样法

直接进样法精密度汇总结果见表 B.3。

表 B. 3 直接进样法精密度

| 序号    | 化合物 | 样品   | 浓度          | 实验室内相对标  | 实验室间相对标  | 重复性限   | 再现性限   |
|-------|-----|------|-------------|----------|----------|--------|--------|
| 17. 4 | 名称  | 类型   | $(\mu g/L)$ | 准偏差范围(%) | 准偏差范围(%) | (µg/L) | (µg/L) |
| 1     | 二苯  | 生活污水 | 100         | 1.6~4.7  | 12       | 8      | 37     |
| 1     | 基锡  | 工业废水 | 200         | 1.5~3.9  | 9.4      | 13     | 47     |
| 2     | 二丁  | 生活污水 | 100         | 1.0~2.1  | 7.6      | 4      | 20     |
| 2     | 基锡  | 工业废水 | 200         | 0.9~2.8  | 3.7      | 10     | 21     |
| 3     | 三苯  | 生活污水 | 100         | 0.8~3.9  | 7.1      | 6      | 19     |
| 3     | 基锡  | 工业废水 | 200         | 1.7~4.4  | 4.4      | 15     | 26     |
| 4     | 三丁  | 生活污水 | 100         | 1.5~5.5  | 3.2      | 7      | 10     |
| 4     | 基锡  | 工业废水 | 200         | 1.4~4.6  | 1.3      | 15     | 15     |

直接进样的准确度汇总结果见表 B.4。

表 B. 4 直接进样法准确度

| 序 | 化合物 | 样品   | 实际样品     | 加标样品浓   | 加标回收率     | _<br>D(0/.)  | $S_{\overline{P}}(\%)$ | $\frac{-}{D+2S}$ (04)         |
|---|-----|------|----------|---------|-----------|--------------|------------------------|-------------------------------|
| 号 | 名称  | 类型   | 浓度(µg/L) | 度(μg/L) | 范围 (%)    | <i>P</i> (%) |                        | $P \pm 2S_{\overline{P}}(\%)$ |
| 1 | 二苯  | 生活污水 | ND       | 100     | 80.4~106  | 92.3         | 11                     | 92.3±22                       |
| 1 | 基锡  | 工业废水 | ND       | 200     | 80.5~102  | 86.4         | 8.3                    | $86.4 \pm 16.6$               |
| 2 | 二丁  | 生活污水 | ND       | 100     | 86.5~103  | 92.8         | 7.3                    | $92.8 \pm 14.6$               |
| 2 | 基锡  | 工业废水 | ND       | 200     | 90.0~100  | 94.3         | 3.5                    | $94.3 \pm 7.0$                |
| 3 | 三苯  | 生活污水 | ND       | 100     | 86.4~106  | 93.7         | 6.6                    | 93.7±13.2                     |
| 3 | 基锡  | 工业废水 | ND       | 200     | 85.0~95.5 | 88.5         | 3.9                    | 88.5±7.8                      |
| 4 | 三丁  | 生活污水 | ND       | 100     | 81.5~89.7 | 86.4         | 2.8                    | 86.4±5.6                      |
|   | 基锡  | 工业废水 | ND       | 200     | 89.0~92.5 | 91.3         | 1.2                    | 91.3±2.4                      |

10