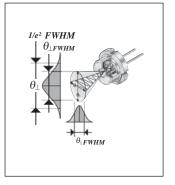

Modular Laser Diode Collimation Systems

Modular LD collimation systems:overview

76 11-2014 E

Schäfter+Kirchhoff GmbH


Physics Fundamentals: Laser Diode Characteristics

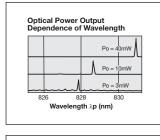
Laser Diodes

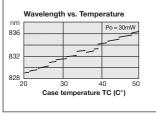
Physics Fundamentals

Divergence and Polarization

Laser Diodes are semiconductor lasers and are available in many different shapes and sizes with laser powers ranging from a few mW to hundreds of watts.

The emitted wavelength depends mainly on the semiconductor material of the laser diode cavity and laser diodes are produced to cover the full visible spectrum from blue to red, and even beyond, with some emitting in the infrared.


The laser diodes distributed by Schäfter+Kirchhoff cover the whole wavelength range from 370 nm to 2300 nm.


The microscopic cross-section of the laser diode active area of 1 x 3 µm results in emitted radiation that is divergent. Most laser diodes have a cone of divergent radiation with an elliptical crosssection and an approximately Gaussian intensity distribution. The ellipticity can be overcome with the help of anamorphic optics.

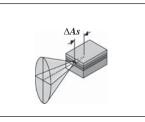
Some diodes (e.g. VCSEL or Circular Laser) are designed to produce a circular beam profile.

The polarization of the emitted radiation is linear and is parallel to the active area of the diode. The degree of polarization varies with the diode current and is lowest at the threshold.

Temperature and Power Dependence

The emitted spectrum is influenced by the diode temperature and diode current, as well as the geometry of the laser cavity. The front face and the end face serve as a Fabry-Perot cavity allowing multiple longitudinal modes.

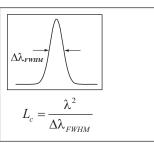
When operated just over the threshold, the diodes have a wavelength spectrum with equidistant peaks (longitudinally multimode). On increasing the diode current (to produce a higher power output), one of the longitudinal modes is usually favored and the diode emits in (longitudinally) singlemode.


Unfortunately, the gain profile and the refractive index of the semiconductor material are

temperature dependent and, so, other longitudinal modes can be amplified and the output wavelength changes rapidly, by up to a few nanometers, resulting in mode hopping.

For a non-stabilized singlemode diode, mode hopping occurs stochastically and the emitted wavelength and output power can change erratically by as much as 3%. For a temperature range of 20 to 30°C, the center wavelength can drift by 2.5-3 nm (GaAs).

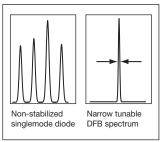
Since changing the diode current changes the diode temperature, the current/power output dependence of the laser diode is only nominal. When the laser power is increased from the threshold up to the nominal power then the wavelength increases by 2-4 nm.


Astigmatism

The non-uniform gain profile within the active layer of the laser diode means that some laser diodes show astigmatism. Here, the laser radiation emitted parallel and perpendicular to the active layer does not emerge from one point at the cavity end, but appears to be emerging from two different positions. The distance between

these is called the astigmatic difference ΔAs and is between 3–40 μm . Astigmatism can be corrected by using anamorphic optics (5AN-...).

Coherence

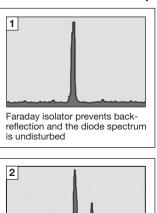


The particular application determines whether a long coherence L_c (here given for a Gaussian spectrum) or a short coherence is desirable. Non-stabilized singlemode lasers with stochastic changes of the wavelength also exhibit stochastic changes in coherence behavior.

Superluminescent diodes use incoherent spontaneous emission to provide short coherence. For

interferometry or spectroscopy, a long (or sufficient) coherence is essential, a feature of DFB, DBR VCSEL diodes with integrated or external thermo-electric cooling (TEC).

Wavelength Constancy


The emitted wavelength can be kept constant in a number of ways. External temperature control is possible using integrated or external Peltier elements and temperature sensors (see 48TE SOT-...). Most laser diodes also have an integrated monitor photodiode, providing feedback for control of the laser power.

The use of DFB (distributed feedback) or DBR diodes

(distributed Bragg reflector) with their spectrally very narrow lines can be advantageous. With the help of a grid structure, only one longitudinal Fabry-Perot mode is amplified (stable singlemode) and mode hopping is suppressed.

VCSEL diodes use DBR structures to produce very narrow lines. The temperature dependence remains, however, and a constant wavelength can only be provided by using an integrated or external temperature control system with integrated monitoring photodiode.

Lifetime and Low Noise Operation

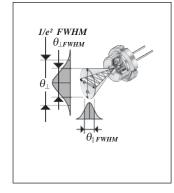
Mode hopping from destabilization

of the diode by back-reflections

Laser diodes are very sensitive, especially when exposed to an electrostatic discharge. Surges in the current or voltage can damage a diode severely, making extremely stable power sources a necessity. The life expectancy of the diode is increased at lower diode temperatures and power outputs, making it very important to operate the diode below its maximum current.

Faraday Isolators (48FI-5-...) can effectively prevent back-reflection into the diode 1.

Back-reflections can cause mode hopping **2** and instabilities in the diode wavelength as well as the power output that, in turn, result in faster degradation of the performance and to disturbance of the polarization.


Schäfter+Kirchhoff GmbH

14 11-2014 E

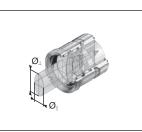
sBasics.indd • Page 15

Laser Collimation and Overview of Laser Diodes

Laser Collimation

The beam can be characterized by the divergence $\theta_{\perp} \propto \theta_{\parallel}$ measured perpendicular and parallel to the active surface area at the 1/e²level (= 13.5%).

Beam characteristics can also be described at the 50% intensity level and are then defined by the divergence $\theta_{\perp FWHM} \times \theta_{\parallel FWHM}$ (FWHM: full-width at half-maximum).


For laser diodes, the parameters $\theta_{\perp FWHM} \, x \, \theta_{\parallel FWHM} \, are usually specified and for a collimated beam, a description at the 1/e²-level is more suitable.$

Collimation optics transform a divergent beam with the divergence $\theta_{\perp} \ge \theta_{\parallel}$ into a collimated beam, retaining both its Gaussian intensity distribution and elliptical beam profile with diameters $\mathcal{O}_{\perp x} \mathcal{O}_{\parallel}$. The beam diameter $\mathcal{O}_{\perp \parallel}$ at the collimator is also given at the 1/e²-level and is defined by the focal length *f* of the collimating lens and the divergence $\theta_{\perp \parallel \text{FWHM}}$ of the laser diode.

These differing definitions are responsible for the factor 1.7 in the equations above.

$\varnothing_{\parallel} = 2 \cdot f \cdot \sin\left(\frac{1}{2} \cdot \theta_{\parallel FWHM} \cdot 1.7\right)$	f = focal length of collimating lens $\emptyset_{\perp\parallel} =$ beam diameter (13.5%-level)
$\varnothing_{\perp} = 2 \cdot f \cdot \sin\left(\frac{1}{2} \cdot \theta_{\perp \text{FWHM}} \cdot 1.7\right)$	$\theta_{\perp\parallel FWHM}$ = laser diode beam divergence (50%-level)

Overview of Laser Diodes

Even a collimated beam exhibits minimal divergence, since the beam diameter varies (for large distances) with the distance *A* from the laser diode collimator. The resulting beam divergences of the collimated beam \mathcal{G}_{\perp} and \mathcal{G}_{\parallel} depend on the respective beam diameters at the collimator \mathcal{O}_{\perp} and \mathcal{O}_{\parallel} and on the wavelength λ of the

emitted radiation. For an ideal Gaussian beam ($M^2 = 1$):

$$\begin{split} \vartheta_{\perp \mid \mid} = & \frac{2 \cdot \lambda}{\pi \cdot \mathcal{O}_{\perp \mid \mid}} & \qquad \begin{array}{l} \mathcal{B}_{\perp \mid \mid} = & \text{beam divergence of the collimated beam} \\ \mathcal{O}_{\perp \mid \mid} = & \text{beam diameter (13.5\%-level)} \\ \lambda & = & \text{wavelength} \end{split}$$

Collimating Lenses

The collimating lenses from Schäfter+Kirchhoff are manufactured from high quality glass. Beam collimation and beam shape are up to 30x more stable in comparison with plastic lenses, which exhibit variations in refractive index and shape with changes in temperature.

Bi-asphere lenses are used for collimating monochromatic radiation and exhibit the same correction and imaging quality as microscope lenses with three or four elements. The particular manufacturing process produces micro structures on the lens surface, which are manifest in the collimated beam but not in a focussed spot. Triplet lenses are three lens systems of spherical elements with high quality surfaces that provide a substantial level of spherical correction and a high numerical aperture.

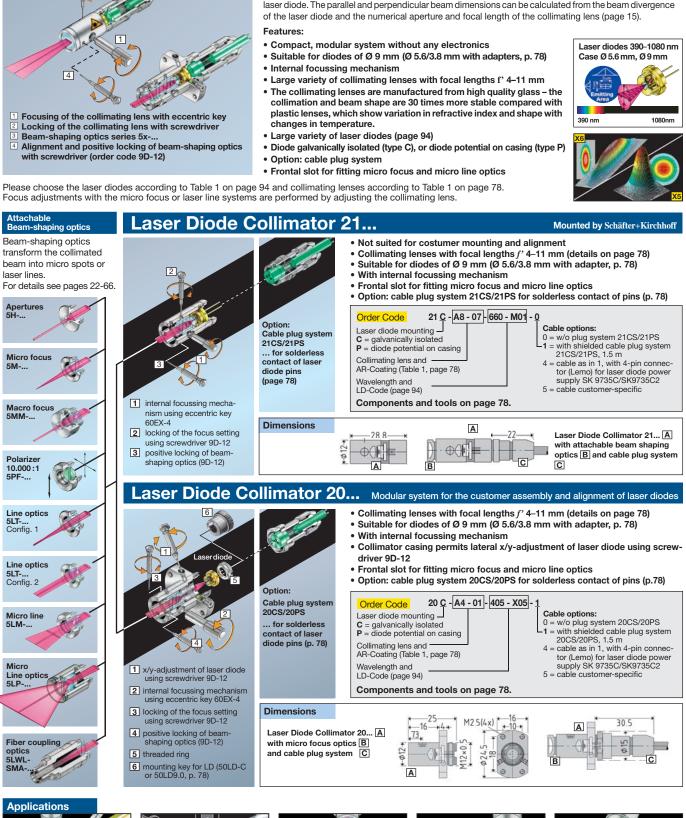
In the wavelength range 370–2300 nm, lenses are provided with an individual anti-reflex coating that cover a few hundred nm of bandwidth.

Component	and the second s	0-68			The second second		Ŭ,		-		
Type of diode	Fabry Perot Ø9 Ø5.6		DFB	/ DBR	Integrated	d TEC/NTC	VCSEL	Circular Laser			
Case type	Ø9	Ø5.6	TO3	TO5	Ø9	TOW 2	TO46	Ø9	Ø5.6		
Integrated TEC/NTC			with and without	with and without	without	with	with and without	with	nout		
Description	Fabry-Perot laser diodes possess a good price-performance ratio because they are one of the commonest types of laser diode and they have a simple edge-emitting structure.		Distributed feedb diodes have an ir within the active grating structure is outside of the a emission bandwi since the emissic can be tuned by the applied curre temperature.	ntegrated grating medium while the for DBR diodes active area. The dth is narrow in wavelength modifying either	Superlumin diodes are characterize spontaneou producing a emission ba with lower o length.	ed by us emission, a larger andwidth	Vertical cavity surface-emitting laser diodes are inexpensive to produce. The beam profile is circular and the emission band- width narrow.	Circular Laser diodes have integrated internal beam-correcting (anamorphic) optics that produce a circular beam profile.			
Wavelengths				-							
390 – 515 nm	x	x									
633 – 700 nm	x	x			x	x	х	x	x		
700 – 1100 nm	x	x	х	х	x	x	х	x	x		
1100 – 2300 nm			x	х			x				
Emission bandwidth	narrow	narrow	very narrow	very narrow	broad	broad	very narrow	narrow	narrow		
Coherence	varying	varying	long	long	short	short	long	varying	varying		
Beam and spot profile	elliptical	elliptical	elliptical	elliptical	elliptical	elliptical	circular	circular	circular		

11-2014 E 15

11-2014 E

77


A laser diode collimator transforms the divergent radiation of a laser diode into a collimated (parallel)

beam. The beam profile is elliptical Ke or circular Ke and is defined by the beam characteristics of the

Schäfter+Kirchhoff

2

Laser Diode Collimators 20-... / 21-... Compact modular system without any electronics

Gene tech **3D Contour Measurement** e.g. for AFM Microscopes Particle measurement Scratch detector **Genetic Engineering**

s20C.indd • Page 77

Schäfter+Kirchhoff GmbH

aser Diode Collimators / Components and Tools Compact modular system without electronics

Collimating lenses for Laser Diode Collimators 20..., 21...

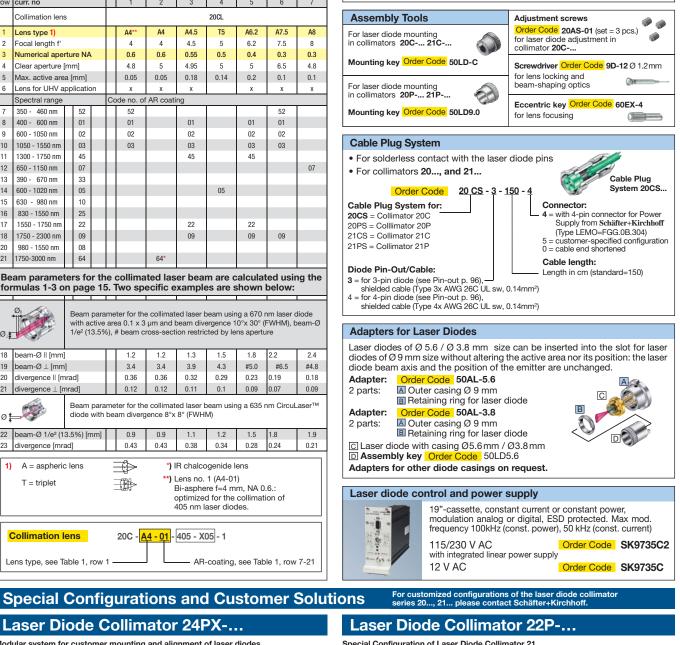
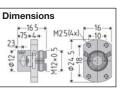

The collimating lenses are manufactured from high quality glass - the collimation and beam shape are 30 times more stable compared with plastic lenses, which show variation in refractive index and shape with changes in temperature.

Table 1 Beam parameters row curr. no				(Collimat	ing Lens	;										
row	curr. r	10			1	2	3	4	5	6	7						
	Collim	nation lens	;					20CL									
1	Lens	type 1)			A4**	A4	A4.5	T5	A6.2	A7.5	A8						
2	Focal	length f'			4	4	4.5	5	6.2	7.5	8						
3	Nume	rical aper	ture NA		0.6	0.6	0.55	0.5	0.4	0.3	0.3						
4	Clear	aperture [mm]		4.8	5	4.95	5	5	6.5	4.8						
5	Max. a	active area	a [mm]		0.05	0.05	0.18	0.14	0.2	0.1	0.1						
6	Lens f	for UHV a	oplication		х	х	х		х	х	х						
	Spect	ral range		Code no. of AR coating													
7	350 -	460 nm	52		52					52							
8	400 -	600 nm	01		01		01		01	01							
9	600 -	1050 nm	02		02		02		02	02							
10	1050 -	1550 nm	03		03		03		03	03							
11	1300 -	· 1750 nm	45				45		45								
12		1150 nm	07								07						
13		670 nm	33														
14		1020 nm	05					05									
15		980 nm	10														
16		1550 nm	25														
17		- 1750 nm	22				22		22								
18		2300 nm	09				09		09	09							
20		1550 nm	08														
	am p		⁶⁴ ers for th n page 1		Two sp	ecific e					ng the						
Be	am p	aramet	ers for th n page 1	5. T	ter for the a 0.1 x 3	ecific e ecific e e collimat µm and b	ed laser b	es are s beam usir ergence 1	shown 19 a 670 r 0°x 30° (l	below: I Im laser of FWHM), b	liode						
Be for	am p mula	aramet is 1-3 o	ers for th n page 1 Beam para with active	5. T	ter for the beam c	ted las ecific e e collimat µm and t ross-sect	xample ed laser b beam dive ion restric	beam usir beam usir ergence 1 cted by le	s hown Ig a 670 r 0°x 30° (I ns apertu	below: nm laser o FWHM), b ire	liode beam-Ø						
Be for Ø⊥ <u>‡</u> 18	am p mula	aramet is 1-3 o	ers for th n page 1 Beam para with active 1/e ² (13.59	5. T	ter for the a 0.1 x 3 # beam c	ted las ecific e e collimat µm and h ross-sect 1.2	ed laser b beam dive ion restric	beam usir ergence 1 sted by le	shown ng a 670 r 0°x 30° (l ns apertu 1.8	below: nm laser o FWHM), b Ire	diode beam-Ø 2.4						
Be for Ø⊥ 18 19	am p mula	aramet is 1-3 o 0 [mm] -Ø ⊥ [mm]	ers for th n page 1 Beam para with active 1/e ² (13.59	5. T	Two spotter for the bea 0.1 x 3 # beam c 1.2 3.4	ted las ecific e e collimat µm and h ross-sect 1.2 3.4	ed laser to be am dive ion restric 1.3 3.9	beam usir ergence 1 ted by le 1.5 4.3	ag a 670 r 0°x 30° (l ns apertu 1.8 #5.0	below: hm laser of FWHM), b ire 2.2 #6.5	diode beam-Ø 2.4 #4.8						
Be for 0. ↓ 18 19 20	am p mula	aramet is 1-3 o -Ø [mm] -Ø ⊥ [mm] jence [m	Beam para with active 1/e ² (13.59	5. T	ter for the ea 0.1 x 3 # beam c 1.2 3.4 0.36	ted las ecific e e collimat µm and l ross-sect 1.2 3.4 0.36	ed laser b beam dive ion restric 1.3 3.9 0.32	beam usir beam usir bergence 1 ted by le 1.5 4.3 0.29	ag a 670 r 0°x 30° (l ns apertu 1.8 #5.0 0.23	below: hm laser of FWHM), b ire 2.2 #6.5 0.19	diode peam-Ø 2.4 #4.8 0.18						
Be for Ø⊥ 18 19	am p mula	aramet is 1-3 o 0 [mm] -0 ⊥ [mm]	Beam para with active 1/e ² (13.59	5. T	Two spotter for the bea 0.1 x 3 # beam c 1.2 3.4	ted las ecific e e collimat µm and h ross-sect 1.2 3.4	ed laser to be am dive ion restric 1.3 3.9	beam usir ergence 1 ted by le 1.5 4.3	ag a 670 r 0°x 30° (l ns apertu 1.8 #5.0	below: hm laser of FWHM), b ire 2.2 #6.5	diode beam-Ø 2.4 #4.8						
Be for 0. ↓ 18 19 20	am p mula	aramet is 1-3 o -Ø [mm] -Ø ⊥ [mm] jence [m	Beam para with active 1/e ² (13.59	5. *	Iwo spin tter for the sa 0.1 x 3 # beam c 1.2 3.4 0.36 0.12 tter for the same c	ted las ecific e e collimat µm and l ross-sect 1.2 3.4 0.36 0.12 e collimat	ed laser b beam dive ion restrict 1.3 3.9 0.32 0.11 ed laser b	beam usir ergence 1 teted by le 1.5 4.3 0.29 0.1	thown g a 670 r 0°x 30° (I ns apertu 1.8 #5.0 0.23 0.09	2.2 #6.5 0.07	diode beam-Ø 2.4 #4.8 0.18 0.09						
Be for 18 19 20 21	beam diverg	aramet is 1-3 o -Ø II (mm) -Ø ⊥ (mm) eence II (m jence ⊥ (n	Beam para with active 1/e ² (13.59 rad] Beam para	5. *	Iwo spin tter for the sa 0.1 x 3 # beam c 1.2 3.4 0.36 0.12 tter for the same c	ted las ecific e e collimat µm and l ross-sect 1.2 3.4 0.36 0.12 e collimat	ed laser b beam dive ion restrict 1.3 3.9 0.32 0.11 ed laser b	beam usir ergence 1 teted by le 1.5 4.3 0.29 0.1 beam usir	thown g a 670 r 0°x 30° (I ns apertu 1.8 #5.0 0.23 0.09	2.2 #6.5 0.07	diode beam-Ø 2.4 #4.8 0.18 0.09						
Be for 18 19 20 21 ∅	beam diverg	aramet is 1-3 o -Ø II (mm) -Ø ⊥ (mm) eence II (m jence ⊥ (n	ers for th n page 1: Beam para with active 1/e ² (13.59 rrad] rrad] Beam para diode with 3.5%) [mm]	5. *	Iwo spin ter for the baa 0.1 x 3 # beam c 1.2 3.4 0.36 0.12 ter for the am diverged	ted las ecific e e collimat µm and h ross-sect 1.2 3.4 0.36 0.12 e collimat gence 8°x	ed laser b beam dive ion restrict 1.3 3.9 0.32 0.11 ed laser b 8° (FWHI	beam usir ergence 1 tted by le 1.5 4.3 0.29 0.1 beam usir M)	ng a 670 r 0°x 30° (I ns apertu 1.8 #5.0 0.23 0.09 ng a 635 r	below: hm laser of FWHM), b rre 2.2 #6.5 0.19 0.07 hm Circul	liode eeam-Ø 2.4 #4.8 0.18 0.09 .aser™						
Ø⊥ 18 19 20 21 Ø 22 23	beam diverg diverg	aramet is 1-3 o -Ø [mm] -Ø ⊥ [mm] ence [m ence [m ence ⊥ [n -Ø 1/e ² (1: ence [mra	ers for th n page 1: Beam para with active 1/e ² (13.59 rad] rad] Beam para diode with 3.5%) [mm] d]	5. *	ter for the a 0.1 x 3 # beam c 1.2 3.4 0.36 0.12 ter for the am diverg 0.9	ted las ecific e e collimat µm and t ross-sect 1.2 3.4 0.36 0.12 e collimat ence 8°x 0.9 0.43	ed laser b beam dive ion restrict 1.3 3.9 0.32 0.11 ed laser b 8° (FWHI 1.1 0.38	peam usir ergence 1 tted by le 1.5 4.3 0.29 0.1 Deam usir M) 1.2 0.34	g a 670 r 0°x 30° (I ns apertu 1.8 #5.0 0.23 0.09 g a 635 r 1.5 0.28	below: nm laser of FWHM), to represent the second secon	2.4 #4.8 0.18 0.09 .aser™						
Be for 18 19 20 21 ∅ ‡ 22	beam diverg diverg	aramet is 1-3 o -Ø II (mm) -Ø ⊥ (mm) ence II (m ence ⊥ (n ence ⊥ (n ence ⊥ (n)	ers for th n page 1: Beam para with active 1/e ² (13.59 rad] rad] Beam para diode with 3.5%) [mm] d]	5. *	ter for the a 0.1 x 3 # beam c 1.2 3.4 0.36 0.12 ter for the am diverg 0.9	ted las ecific e e collimat µm and b ross-sect 1.2 3.4 0.36 0.12 e collimat gence 8°x 0.9 0.43	ed laser b beam dive ion restrict 1.3 3.9 0.32 0.11 ed laser b 8° (FWHI 1.1 0.38 R chalco	peam usir ergence 1 tted by le 1.5 4.3 0.29 0.1 beam usir M) 1.2 0.34	shown g a 670 r 0°x 30° (Ins apertu 1.8 #5.0 0.23 0.09 g a 635 r 1.5 0.28	below: nm laser of FWHM), to represent the second secon	2.4 #4.8 0.18 0.09 .aser™						
Be for 18 19 20 21 ∅ 22 23	am p mula 0 beam diverg diverg diverg	aramet is 1-3 o -Ø [mm] -Ø ⊥ [mm] ence [m ence [m ence ⊥ [n -Ø 1/e ² (1: ence [mra	ers for th n page 1: Beam para with active 1/e ² (13.59 rad] rad] Beam para diode with 3.5%) [mm] d]	5. *	ter for the a 0.1 x 3 # beam c 1.2 3.4 0.36 0.12 ter for the am diverg 0.9	ted las ecific e e collimat µm and h ross-sect 1.2 3.4 0.36 0.12 e collimat gence 8°x 0.9 0.43 °) 1 **) 1 t	xample ed laser b beam dive ion restrict 1.3 3.9 0.32 0.11 ed laser b 8° (FWHI 1.1 0.38 R chalcc Lens no. Bi-asphe poptimizer	Area Second	shown og a 670 r 0°x 30° (I ns apertu 1.8 #5.0 0.23 0.09 og a 635 r 1.5 0.28 ens m, NA 0. collimati	below: hm laser of FWHM), b re 2.2 #6.5 0.19 0.07 1.8 0.24 6.:	2.4 #4.8 0.18 0.09 .aser™						
Be for 18 19 20 21 0 22 23 1)	beammula beammula diverg diverg A = T =	- $O \parallel [mm]$ - $O \parallel [mm]$ - $O \perp [mm]$ ence $\parallel [mm]$ ence $\perp [m]$ ence $\perp [m]$ ence $\lfloor mr$ aspheric	Beam para with active 1/e ² (13.59 rad] rad] Beam para diode with 3.5%) [mm] id]	5. •	Two spin tter for the sa 0.1 x 3 # 1.2 3.4 0.36 0.12 tter for the same can be s	ted las ecific e e collimat µm and h ross-sect 1.2 3.4 0.36 0.12 e collimat gence 8°x 0.9 0.43 °) 1 **) 1 t	xample ed laser to beam dive ion restric 1.3 3.9 0.32 0.11 0.32 0.11 1.1 0.38 R chalco Lens no. Bi-asphe potimized	beam usin regence 1 tted by le 1.5 4.3 0.29 0.1 0.29 0.1 0.29 0.1 0.29 0.1 0.34 v) le 1.2 0.34 ogenide I 1 (A4-01 reference 1 1 (A4-01) reference 1 1 (A4-01) 1 (A	shown og a 670 r 0°x 30° (I ns apertu 1.8 #5.0 0.23 0.09 og a 635 r 1.5 0.28 ens m, NA 0. collimati	below: hm laser of FWHM), b re 2.2 #6.5 0.19 0.07 1.8 0.24 6.:	2.4 #4.8 0.18 0.09 .aser™						

Laser Diodes

Please choose your laser diode according to Table 1 on page 94 of the cataloa. Other diodes are available on request.


The laser diode collimators of series 20... and 21... can also be supplied with customer-owned laser diodes. Please contact Schäfter+Kirchhoff if these are not part of our product portfolio since specific features (e.g. point of emission, etc.) about the laser diode need to be known beforehand in order to ensure compability with the laser diode collimator.

Laser Diode Collimator 24PX-... Modular system for customer mounting and alignment of laser diodes Special design for use in ECL

Laser diode collimator 24PX... Lens A3.1-... NA 0.68 A4-01 NA 0.6 (370–600nm) A4.5-... NA 0.55 If not specified, AR coatings are available in the range 370 -2300 nm each covering several 100 nm bandwidth (see table 1)

Special Configuration of Laser Diode Collimator 21...

- Not suited for customer mounting/alignment x/y-adjustment of laser diode with special tool With internal focussing
- mechanism Frontal slot for fitting micro
- focus and micro line optics

Ŧ	
p11	
<u>*</u>	040
	H-22.3-H

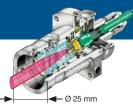
Dimensions

Table 2: Overview: Laser Diode Collimators 20, 21, 22P and 24PX Compact modular system without electronic												
Casing Ø [mm]	Focal Length [mm]	LD Customer Galv. isolation o Mounting/Alignment ser diode		Cable Plug System	Flange	Focussable	Attachable beam shaping opics	Laser Diode Collimator				
12 4-11 x/x x/-		x/-	20CS/20PS	x/x	х	х	20C/20P					
12	4-11	-/-	x/-	21CS/21PS	-	х	х	21C/21P				
11	4-11	-	-		-	х	х	22P				
12	3.1-4.5	х	-	20PS	x	x		24PX				

78 11-2014 E

Schäfter+Kirchhoff GmbH

Collimator for P<120 mW

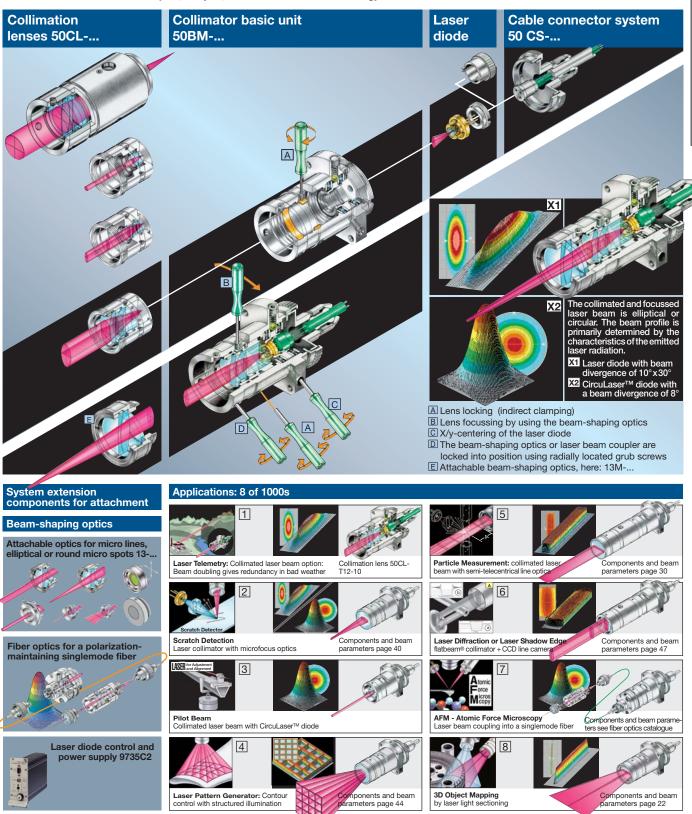

2300 n

Laser diodes 390-2300 nm

Casings Ø 5.6 mm, Ø 9 mm

390 nm

Laser Diode Universal Collimator 50BM-...



 Modular assembly system for the quick and precise mounting, adjustment and collimation of laser diodes 390–2300 nm

- Suitable for diodes of Ø 9 mm (Ø 5.6/3.8 mm with adapter, p. 80) and P<120mW
 Collimation of beam-shaping optics for the generation of micro focus and leave lines
- laser lines

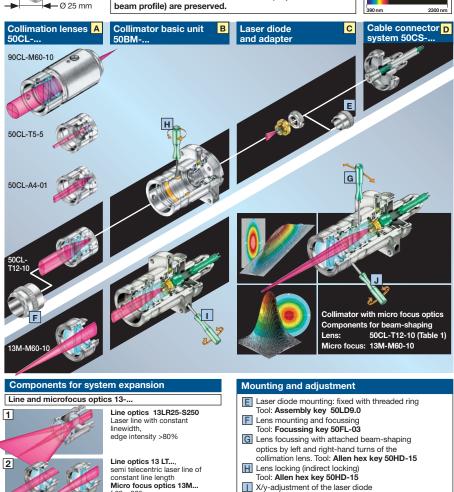
 Laser beam coupling into polarization-maintaining singlemode fiber cable
- with mode field diameters (MFD) ${\geq}2~\mu m$

The universal laser diode collimator system 50BM-... with attached beam-shaping and fiber optics from Schäfter+Kirchhoff provides a range of laser system configurations with 1000s of combinations of laser beam-shaping optics for data transmission, medical applications, industrial measurement and sensor techniques, analysis, biosensors and nanotechnology.

11-2014 E 79

Schäfter+Kirchhoff GmbH

ndd • Page


D-Kolli 50BM 4seit LaserLines.

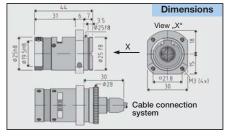
Universal Laser Diode Collimator 50BM-...

Collimation lenses transform the divergent laser radiation into a parallel beam. The beam parameters are determined by the focal length of the lens, its numerical aperture and the divergence of the initially emitted radiation. The original beam characteristics of the laser diode (elliptical or circular beam profile) are preserved.

Tool: Allen hex key 50HD-15 J Direct mounting and locking of beam-shaping optics

and laser beam coupler Tool: Allen hex key 50HD-15

Tools for mounting and adjustment


1 1 Assembly key for laser diode mounting Order Code 50LD9.0 2 Assembly key for collimation lenses 50CL Order Code 50LF-03 3

2 3 Allen hex key WS Ø 1.5 mm Order Code 50HD-15

Adapter for Mounting Laser Diodes Ø5.6 /3.8 mm Laser diodes of Ø 5.6/Ø 3.8 mm size can be inserted into the slot for laser diodes of Ø 9 mm size without altering the active area nor its position: the laser diode beam axis and the position of the emitter are unchanged. Adapter Order Code 50AL-5.6

Adapters for other diode casings on request

Modular assembly system for the rapid and precise mounting, adjustment and collimation of laser diodes

The universal laser diode collimator system **50BM-...** has a robust size, and the ease of assembly and accessibility of adjustment and locking for it to be used in a wide range of both laboratory and industrial applications.

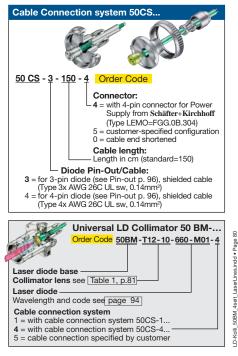
The 50BM-... system is ideal for the selfassembly of laser diodes with 9 mm casings or smaller using the appropriate adapter. The galvanically decoupled ball bearing provides precise adjustment for laser diodes with lower power outputs of <120 mW and wavelengths <600 nm.

The universal laser diode collimator system 55BC-... is the system of choice when higher powers are required.

A Collimation lenses 50CL-...

- Transforms the divergent diode laser radiation into a parallel laser beam.
- Focal lengths from f' 4 mm to f' 60 mm (Table 1, page 81).
- AR coatings cover 350–2300 nm range, each with bandwidths of 250 to 600 nm.

B Collimator base 50BM


- Integrates laser diode, collimation lens and cable connection system for the laser current supply.
- · Galvanically decoupled laser diode mounting with ball bearing (no freeplay). Precise x/y-adjustment of the laser diode, which is fastened using a threaded ring. Lens socket with cylindrical fit and fine thread.
- Internal lens focussing of 50CL: left or righthand turn of the collimation lens provides a fine adjustment of the collimation or focus of the laser beam, even with attached beamshaping optics.
- Frontal cylinder mounting with locking screws for the positive attachment of beam-shaping optics. The beam-shaping optics provide laser lines, micro focus optics or laser beam coupler for singlemode fiber cables.
- The laser module can be integrated into the microbench system using rods of Ø 6 mm with 30 mm pitch.

C Laser diode 600–2300 nm (page 94)

• The laser diode socket accepts laser diodes with Ø 9 mm casing and can also be used for the correct placement and centering of diodes with Ø 5.6 mm casing by using the Adapter 50AL-5.6

D Cable connection system 50CS-...

· Electrically isolated, solderless, spring contacts for the laser diode. Cable housing with screw cap and integrated cord grip.

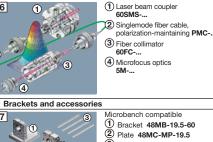
80 11-2014 E

2

Schäfter+Kirchhoff GmbH Kieler Str. 212, 22525 Hamburg, Germany • Tel: +49 40 85 39 97-0 • Fax: +49 40 85 39 97-79 • info@SuKHamburg.de • www.SuKHamburg.com

f 60 – 325 mm Polarizer, iris aperture, and adapter Iris aperture 13BL1-13 aperture Ø 1-13 mm Polarizing filter 13PF-.. 10.000:1Adapter 8AM-19.5 for beam-shaping optics 5.. Beam-shaping optics 5... for laser beam Ø 5 mm Anamorphic beam-shaping optics 5AN.. Afocal cylinder lens optics Integrated astigmatism correction
 Beam aperture: 5 mm 1> Fiber optics for polarization-maintaining singlemode fibers

3


4

5

6

7

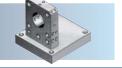
8

Laser diode control and power supply 9735C2

3 Rods 48MC-6-...

• 19" cassette 3HE / 10TE 133.3 x 50.8

Up to 250mA laser current output
 ESD protection

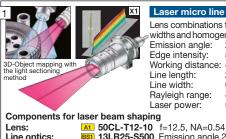

Modulation digital and analog

x75 mm) for power supply 115/230 V Constant current or power operation

Collimation Lenses 50CL

Tal row										<u> </u>							Mount
row	ole 1	Beam p	arameter	s	Col	limat	ion L	ens (50CL								
	-				1**	2	3*	4	5	6	7	8	9	10*	11	12****	
1		ation lens type 1)	S		A4	A4	A4.5	T5	A6.2	50CL	A8	A8	T12	T12F	M12	90CL M60	
2	Focal	length f'			4	4	4.5	5	6.2	7.5	8	8	12.5	12.5	12.1	60	
3		rical ape aperture			0.6 4.8	0.6 4.8	0.55 4.95	0.5 5	0.4 5	0.3 6.5	0.3 4.8	0.5 8	0.54 13.5	0.54 13.5	0.22 5.5	0.14 17	Laser
5	Max.	active are	a [mm]		0.05	0.05	0.18	0.14	0.2	0.1	0.1	0.1	0.2	0.2	0.2	0.2	
6	-	ior UHV a ral range	pplicatio	on	x Code	x	X	oatin	X	х	х	х	х	х			Please choos the catalog. C
7	-	460 nm	52		52	10.0	Ant	Joanny	9	52	1	1	1	[[Applications
8		600 nm 1050 nm	01		01		01 02		01	01		01					- ppilotione
10		1550 nm	02		02		02		02	02		02					
11		1750 nm	45				45		45								
12 13		1150 nm 670 nm	07								07				33	33	
14		1020 nm	05					05									
15 16		980 nm 1550 nm	10 25										10		10	10	3D-Object mapping the light sectioning method
17		- 1750 nm	22				22		22			22					method
18 20		2300 nm 1550 nm	09 08				09		09	09		09	08	08	08		
21		000 nm	64			64***							00	00	00		Components f
	1		Beam														Lens: Line optics:
	• [™]		with a 1/e ² (1).1 x 3	βµm a	and be	eam c	liverge	ence	10°x 3	30° (F)	NHM)	, bea	n-Ø	Laser diode:
Ø	1	at the	# bear									***	IR cha	alcoge	enide	lens	2
18	beam	-Ø [mm]		11510	1.2	1.2	1.3	1.5	1.8	2.2	2.4	2.4	3.7	3.7	3.6	#17	
19		-Ø⊥[mm			3.4	3.4	3.9	4.3	# 5.0	#6.5	# 4.8	#6.9	10.8	10.8	#5.5	#17	
20 21	-	ence II [m ence ⊥ [n			0.36	0.36	0.32	0.29	0.23	0.19	0.18	0.18		0.12	0.12	0.03	
21	uiverg		Beam		meter	for th	e coll	imate	d lase	r bea							Counting and size determination of tracers
Ø			diode		-		_										
22 23		-Ø 1/e² (1 ence [mra		nmj	0.9	0.9	1.1 0.38	1.2 0.34	1.5 0.28	1.8 0.24	1.9 0.21	1.9 0.21	3.0 0.14	3.0 0.14	2.9 0.14	14.2 0.03	
1)	A - as	spheric le	ons		-6			*) L	ens n	o. 3 a	and 1	0: sp	ecial	lense	s, op	tics	Detection of sprayed distribution
ľ.		iser mon		at	£	R					aser o wind		s with	nout			
	T = tr					e KS						A4-	01) A 0.6	opti	mizec	for	3
						AF .							nm la				6
Co	llimat	tion len	S		50CI	L- <u>T1</u>	<u>2-0</u>	<u>5</u> E	Best.	-Coo	de						-
							l					e Tal Tabl					Particle measureme
	_					_								_			
	.D ι	inive	ersa	l c	oll	im	ate	or :	sys	ste	m	50	B	И	••		Components f
BS	Beam-	shaping	Α	Coll	imatio	on		BC	Collin	nator	base	•	D Ca	ble c	onne	ction	Adapter: Microline optic
	optics			lens	es 500	CL		5	OBM				sys	stem	50CS		Laser diode: H
					_								A	2		¢	
B	S1	Zs'	1	<mark>A1</mark>		2/	1							7.	2		
		S			1	3				0		$\boldsymbol{\mathcal{A}}$		I			
1	1	BS2		/	Ð					TE	and a						
	/ 6							6			1				liada		
		159				a		\sim	Ì				Lā	iser (diode		
		S.		<mark>A2</mark>		P.								<u>s</u>	0	600	
		BS3			le Co	and the second s								6.0			
												1	0	1	P		
	1	11	8) I				1					Í.	1	0	Ś		
5	\sim				T	\$					r			1			Application tor and CCD li
				/	Ŷ						K	J.Y	Fa				stem. High spe
									/			foc	ollim	tics a	and b	eam	gularities or cor
		637						Ada	inter	for lo		amete	ers ap Ø 5.0	plica	tion r	10.5	5
	0.17		2					Арр	olicat	ion:	Laser	diod	les wi	th Ø	5.6 m		Cart
				A	3	~		the	retair	ners f	or las	ser di	d cor odes	with	a Ø 9		
		ST.			10.000							dapte					
		Ŵ				J.			lace	r dia	do b	eam-					Scratch Detection
		BS4						The pos	ition	of th		nitter	axis a do n	and t ot ch	he ange		The collimated
		BS4		A		6		The pos Ada 2 pa	apter arts:	of th	ne en	nitter Or	axis a do n rder C	and t ot ch	he ange		The collimated and focussed laser beam
	355	BS4		A		9		The pos Ada 2 pa	apter arts: Casing	of th g, out	ter Ø	nitter	axis a do n rder C	and t ot ch	he ange		The collimated and focussed laser beam is either elliptical X5 or
	355	BS4		A		8		The pos Ada 2 pa A C B T	apter arts: Casing Thread or las	of th g, out ded r er dio	ter Ø ing ode	nitter Or 9 mn	axis a do n rder C	and t ot ch ode	he ange		The collimated and focussed laser beam is either elliptical XS or The emitted be
	355	BS4				6		The pose Ada 2 pa A C B T fu C L	arts: Casing Thread or las aser 5.6	of th g, out ded r der dio diode mm l	ter Ø ing ode e with	n itter Or 9 mn n ng	axis a do n rder C	and t ot ch code	he ange 50AL A		The collimated and focussed laser beam is either elliptical X5 or

Mounting Bracket



Bracket Order Code 48MB-25-60 Microbench compatible (pitch: 30 mm, rods Ø 6 mm)

Diodes

se your laser diode according to table 1 on page 94 of Other diodes are available on request.

Laser diode universal collimator 50BM-... with beam-shaping optics using the modular assembly system from Schäfter+Kirchhoff

Lens combinations for lines with constant linewidths and homogeneous intensity distribution. Emission angle: Edge intensity: 25° (option: 12° or 40°) 80% Working distance: 496 mm 217 mm 0.134 mm 43 mm up to 40 mW Rayleigh range:

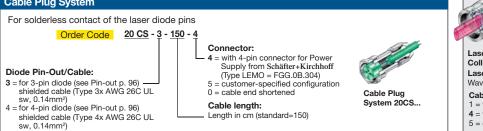
A1 50CL-T12-10 f=12.5, NA=0.54, AR 630-980 nm BSI 13LR25-S500 Emission angle 25°, focal length f 500 M26 - 40 mW, 660 nm

nting and size mining and size	Telecentric laser band Anamorphic cylinder lens optics Beam width: 30 mm Beam width: 1.3 mm (Option: 3 mm) Beam divergence: 0.3 mrad Edge intensity: 60 % Laser power: 15 mW Components for beam shaping Lens: A2 Triplet f 5, NA 0.5 Anamorphic optics: BS3 50AN 6-30 Laser diode: N09 – 30 mW, 660 nm
icle measurement	Laser micro line Semi-telecentric laser line with constant line length Line length: 4.8 mm Une width: 0.027 mm Working distance: 74 mm Rayleigh range: 1.7 mm Edge intensity: 40%
mponents for beam shaping ns: Image: Constraint of the constra	, Asphere f8 NA 0.3, AR 650-1150 nm The beam height θII of the collimated laser beam is in focus. The line length remains constant.
	 Laser diode collimator flatbeam[®] Telecentric laser beam, [™] beam and intensity distribution Beam divergence: typ. 0.03 mrad Beam aperture: 17 mm (option: 37 mm) Intensity distribution axis A-A: flat top (rectangular) Edge intensity axis A-A > 80% (typ.) Intensity distribution axis B-B: Gaussian beam distribution Components for beam shaping

Components for beam shaping A4 90CL-M60-10 Lens:

f 60 NA0.13-AR630-980 mm Laser diode: H01 – 5mW, 633 nm

Optoelectrical measurement system with laser diode collimaline scan camera: Laser shadow edge or diffraction measuring sy-eed sensor technology for diameter or edge detection, position irreontractions.


	beam cross-section	distribution x5 n: ser diodes θ 22	
The collimated and focussed laser beam	Working distance:	intensity distribution 125 an iss-section: al with laser diodes 0 22° / ar, aspect ratio 1.2 : 1 ssection elliptical cir 0.006/0.015 mm 0.4 distance: 54 mm 54 distance: 64 mm 54 fill 50 m	circular 0.004 mm 54 mm 0.030 mm
is either	Components for be	am shaping:	
elliptical X5 or circular X6.	Lens:		A4 50CL-M60-10 f 60 NA 0.13
The emitted beam profile is determined by the beam	Micro focus optics:		BS2 13M-M60-10 f60 NA 0.13
characteristics of the laser diode.	Laser diode:		B07 – 15 mW, 635 nm

50BM_4seit_LaserLines.indd • Page 81 LD-Kolli_

11-2014 E 81

Collimator for P>120 mW Universal Laser Diode Collimator 55BC-... Collimation lenses transform the divergent laser radiation Laser diodes 390-2300 nm Ø 5.6 mm. Ø 9 m into a parallel beam. The beam parameters are determined by the focal length of the lens, its numerical aperture and the divergence of the initially emitted radiation. The original beam characteristics of the laser diode (elliptical or circular beam profile) are preserved. Collimation lenses A 50CL-... Collimator basic unit В Laser diode С ction D and adapter 55BCstem 200 0 90CL-M60-10 н G 50CI -44-0 J Collimator with micro focus optics Components for laser beam shap 50CL-T12-10 (Table 1) Lens: 3M-M60-Micro focus: 13M-M60-10 **Mounting and Adjustment** Adapter for Mounting Laser Diodes Ø5.6 /3.8 mm Laser diodes of Ø 5.6 mm / Ø 3.8 mm size can E Laser diode mounting: fixed by a threaded ring be inserted into the slot for laser diodes of Ø 9 Tool: Assembly key 50LD-C mm size without altering the active area nor its E Lens mounting and focussing position: the laser diode beam axis and the Tool: Focussing key 50FL-03 position of the emitter are unchanged. G Lens focussing with attached beam-shaping optics by a left or right-hand turn of the Adapter Order Code 50AL-5.6 2-parts: A Outer casing Ø 9 mm collimation lens B Retaining ring for Tool: Allen hex key 50HD-15 laser diode H Lens locking (indirect locking) Adapter Order Code 50AL-3.8 Tool: Allen hex key 50HD-15 2-parts: A Outer casing Ø 9 mm x/y-adjustment of the laser diode B Retaining ring for laser diode Tool: Allen hex key 50HD-15 er diode with casing Ø5.6 mm J Direct mounting and locking of beam-shaping / Ø3.8 mm optics and laser beam coupler Assembly key Order Code 50LD5.6 Tool: Allen hex key 50HD-15 Adapters for other diode casings on request **Tools for Mounting and Adjustment** 1 Assembly key 2 Assembly key for collimation lenses 50CL Order Code 50LF-03 for laser diode mounting 3 Order Code 50LD-C 3 Allen hex key WS Ø 1.5 mm Order Code 50HD-15 Dimensions 64.4 33.9 30.5 Ø28f6 4 5 10 6

Cable Plug System

82 11-2014 E

Kieler Str. 212, 22525 Hamburg, Germany • Tel: +49 40 85 39 97-0 • Fax: +49 40 85 39 97-79 • info@SuKHamburg.de • www.SuKHamburg.com

Schäfter+Kirchhoff

Modular assembly system for the rapid and precise mounting, adjustment and collimation of laser diodes

The universal laser diode collimator system 55BC-... has a robust size, and the ease of assembly and accessibility of adjustment and locking for it to be used in a wide range of both laboratory and industrial applications.

The 55BC-... system is suited for laser diodes with 9 mm casings or smaller using the appropriate adapter. The laser diode is mounted galvanically decoupled and can be adjusted with high precision.

The 55BC-... has a good heat dissipation and is thus suitable for diodes with higher power output >120 mW and wavelengths down to the UV.

A Collimation lenses 50CL-...

- Transforms the divergent diode laser radiation into a parallel laser beam.
- · Focal lengths from f' 4 mm to f' 60 mm (Table 1, page 81).
- AR coatings cover 390-2300 nm range, each with bandwidths of 250 to 600 nm.

B Collimator basic unit 55BC

- Integrates laser diode, collimation lens and cable connection system for the laser current supply.
- · Galvanically decoupled laser diode mounting. Precise x/y-adjustment of the laser diode, which is fastened using a threaded ring.
- Lens socket with cylindrical fit and fine thread. Internal lens focussing: left or right-hand turn of the collimation lens provides a fine adjustment of the collimation or focus of the laser beam, even with attached beam-shaping optics
- Frontal cylinder mounting with locking screws for the positive attachment of beam-shaping optics. The beam-shaping optics provide laser lines, micro focus optics or laser beam coupler for singlemode fiber cables.
- The laser module can be integrated into the microbench system using rods of Ø 6 mm with 30 mm pitch.

C Laser diode 390–2300 nm (page 94)

• The laser diode socket accepts laser diodes with Ø 9 mm casing and can also be used for the correct placement and centering of diodes with Ø 5.6 mm casing by using the Adapter 50AL-5.6.

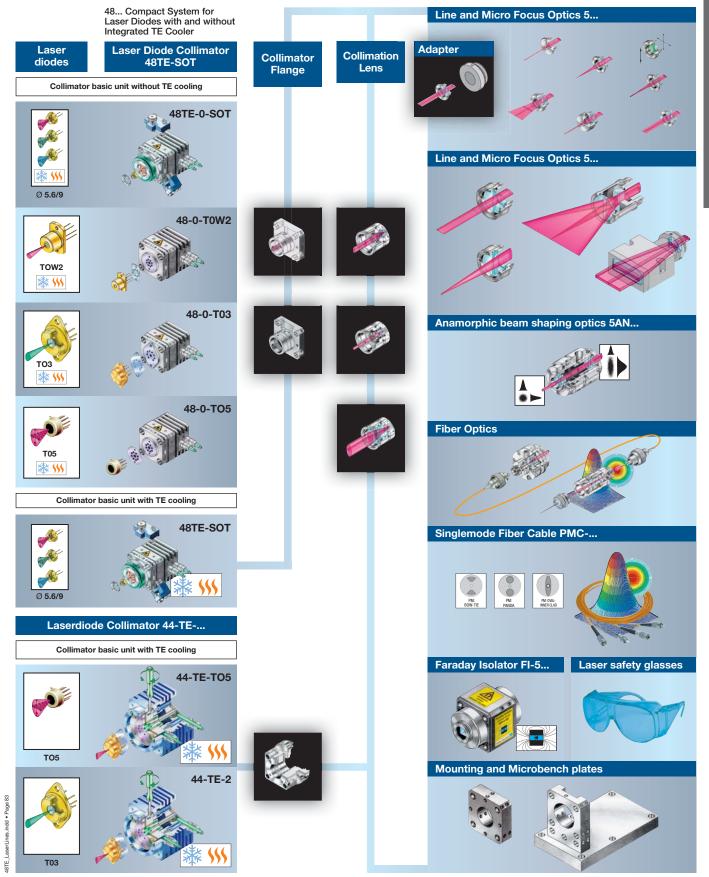
D Cable connection system 20CS-...

· Electrically isolated, solderless, spring contacts for the laser diode.

aser diade control/nower supply SK9735C2

	control/power supply SK973502
	 19" cassette 3HE / 10TE 133.3 x 50.8 x75 mm) for power supply 115/230 V Constant current or power operation Up to 250mA laser current output ESD protection Modulation digital and analog
Orc Laser diode bas	Universal LD Collimator 55 BC der Code 55BC- T12-10-660-M01-4 se see Table 1, p.81
Wavelength and	SK-code see last page
4 = with cable co	on system onnection system 20CS-1 onnection system 20CS-4 specified by customer
Sc	häfter+Kirchhoff GmbH

Laser Diode Collimators 48..., 44-... Modular System for temperature-stabilized Laser Diodes

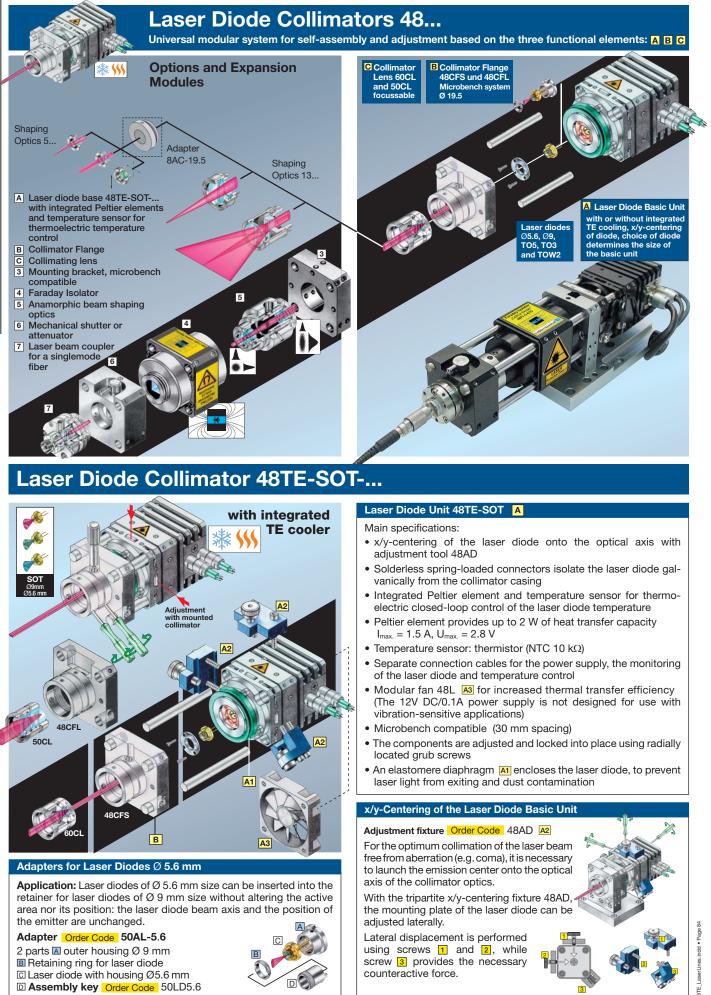

The Laser Diode Collimators of type

48... and 44-... are modular systems from Schäfter+Kirchhoff designed for laser diodes of the type Ø9, Ø5.6, The core laser diode systems can be

TOW2, TO3, TO5 and TO46. The core laser diode systems can be supplied with Peltier elements or without integrated thermoelectric

cooling. They are compatible with the microbench system and can be extended according to need using fiber connectors with the option, for example, of a Faraday Isolator to prevent to back-reflections of the laser beam.

These systems are provided for self-assembly but can be supplied preassembled and preadjusted according to customer requirements.



Collimtor for TE Cooling

Schäfter+Kirchhoff GmbH

11-2014 E 83

Modular collimator system 48...

 04
 II-2014 E

 Schäfter+Kirchhoff GmbH

 Kieler Str. 212, 22525 Hamburg, Germany • Tel: +49 40 85 39 97-0 • Fax: +49 40 85 39 97-79 • info@SuKHamburg.de • www.SuKHamburg.com

Dimensions

Schäfter+Kirchhoff GmbH

48....

貅 ~~~

Kieler Str. 212, 22525 Hamburg, Germany • Tel: +49 40 85 39 97-0 • Fax: +49 40 85 39 97-79 • info@SuKHamburg.de • www.SuKHamburg.com

diode casing.

attached.

radially located grub screws.

of microbench components

optional: 44L fan module, 12 V DC

4 Collimator objective adjustment tool 50LF-03

5 Bracket 44LM

F 042 48

22.3

11-2014 E 85

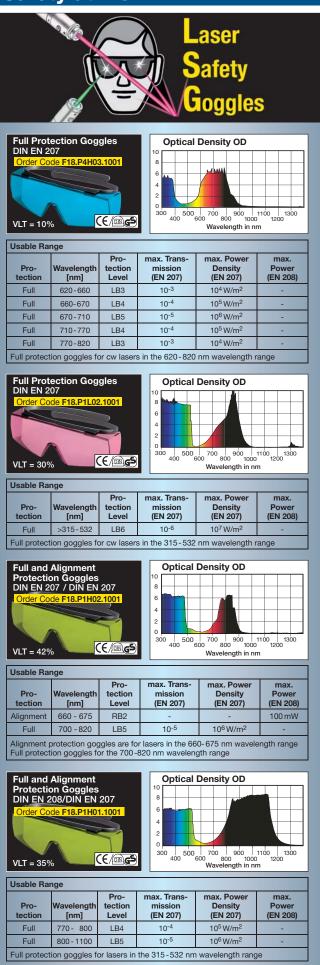
• A solderless spring-loaded for the laser diode isolates it galvanically from the

 \bullet Peltier element with a 15 watt heat transfer capacity (I_{max} +3.9 A, U_max 11.5 V).

Adjustable and focussable encasement of the collimator objective. A left or

right-hand turn of the collimator objective provides a fine-focussing and collimation of the laser beam, even with extraneous beam-shaping optics

• The beam-shaping optics and singlemode fiber connector have the requisite cylindrical shape and V-groove for attachment to the collimator casing. The optical attachments can be adjusted radially and are locked into place with the


観川

-) W W

44TE-...

• x/y-adjustment range of the laser diode by up to 0.5 mm

Safety at Work

Laser safety and laser adjustment goggles

The use of laser safety goggles is recommended when working with lower power lasers from laser protection class 3R and beyond, such as all visible lasers from Schäfter+Kirchhoff with up to 5 mW of output power.

Laser safety goggles are mandatory for protection class 3B and beyond, such as all invisible infrared lasers and all visible lasers from **Schäfter+Kirchhoff** with more than 5 mW of output power.

The correct handling and use of the laser safety goggles protects you and your colleagues against eye injuries from hazardous laser radiation. A selection of CE and GS certified laser safety goggles (manufactured by LaserVision, www.lvg.com) are provided for the lasers manufactured by Schäfter+ Kirchhoff.

The type of frame is dependent upon whether glass or plastic filters are fitted. Laser safety goggles with glass filters (Order Code **RX7**) have a heavier frame with a facility for attaching personal spectacles, according to individual requirements. Laser safety goggles with plastic filters are lighter and can be worn over normal spectacles.

The two distinct protective functions of either **full protection goggles** or **alignment protection goggles** need emphasizing (see box below).

Laser Safety Goggles - Function and Characteristics

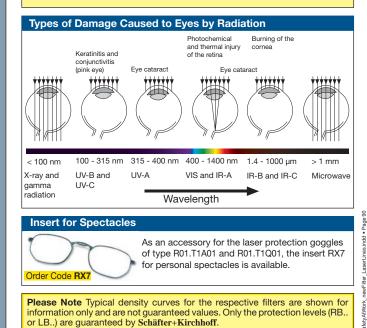
Protective function. Full protection goggles and alignment goggles provide different levels of safety and laser protection.

Full protection goggles, conforming to European standard EN 207, provide personal protection against laser radiation. The laser radiation is blocked and is no longer visible.

The **protection levels** (such as protection level LB..) differ in the maximum spectral transmission of the filter glasses. The EN 207 standard specifies a maximum incident laser power density (power per unit area, in W/m^2) for the laser power that is allowed to irradiate the filter glass.

Alignment protection goggles, conforming to European standard EN 208, reduce the visible laser radiation (400 - 700 nm wavelengths) to that of the power of laser class 2 (EN 60825-1). The laser radiation remains visible so as to allow the alignment protection glasses to be used for adjustment tasks while offering significant laser protection safety.

The **protection levels** (protection level RB..) describe the maximum power (watts) of a collimated laser beam that is allowed to irradiate the goggles.

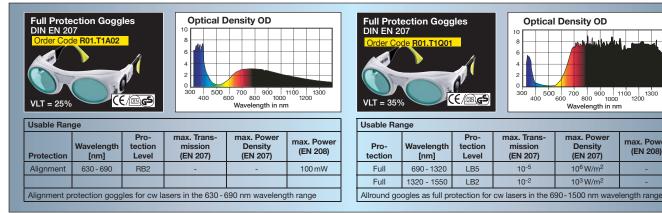

Maximum power (EN 208): the maximum power of a laser beam in a specified wavelength range that is sufficiently attenuated by the alignment protection goggles (in accordance with EN 208).

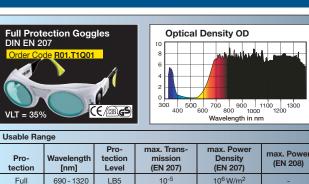
Maximum transmission (EN 207): maximum transmission (minimum attenuation) in a specified wavelength range (according to EN 208). **Maximum power density** (EN 207): maximum power density that the filter glasses can withstand over a longer period (according to EN 207).

VLT: (visible light transmission): in addition to the specified wavelengths, laser protection goggles also attenuate the ambient light. The VLT is the percentage of daylight transmitted.

OD (optical density): logarithmic scale for the attenuation of radiation at a specified wavelength. The *OD* at wavelength λ is defined as:

 $OD(\lambda) = -\log_{10} \tau(\lambda)$




90 11-2014 E

Schäfter+Kirchhoff GmbH

10³ W/m²

Laser Alignment Goggles

Full

1320 - 1550

LB2

Laser Safety

According to DIN IEC 60825-1:2007, every laser system must be labelled with a warning triangle.

Additionally, all lasers must be labelled with additional warning information specific to the laser class:

Class 1:

" CLASS 1 LASER PRODUCT "

Class 1M:

" LASER RADIATION, DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS, CLASS 1M LASER PRODUCT

Class 2:

LASER RADIATION, DO NOT STARE INTO BEAM, CLASS 2 LASER PRODUCT

Class 2M:

LASER RADIATION, DO NOT STARE INTO BEAM OR VIEW DIRECTLY WITH OPTICAL INSTRUMENTS, CLASS 2M LASER PRODUCT "

Class 3R:

" LASER RADIATION, AVOID DIRECT EYE EXPOSURE, CLASS **3R LASER PRODUCT '**

Class 3B:

LASER RADIATION, AVOID EXPOSURE TO THE BEAM, CLASS 3B LASER PRODUCT

Class 4:

LASER RADIATION, AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION, CLASS 4 LASER PRODUCT

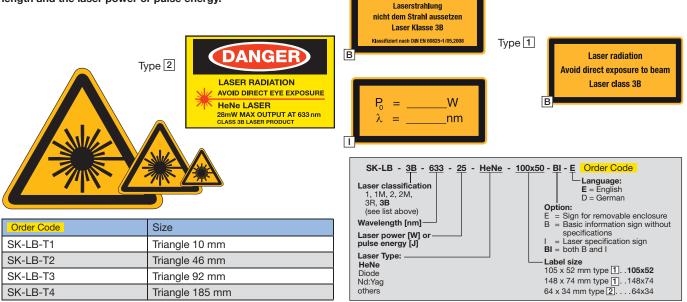
Furthermore, all lasers of class 2 to 4 must have a warning that lists the laser specifications, including the laser source, the wavelength and the laser power or pulse energy.

If the laser is enclosed but the housing can be opened then the housing must also be labelled with a warning triangle and the requisite information about the laser class. as listed below:

10-2

Class 1: The laser is safe for any form of measurement task and the maximum permitted exposure (MPE) cannot be exceeded. Enclosed high power laser systems, with an integrated automatic shutdown system on opening of the enclosure, are also included in this laser class

Class 1M: As for class 1, except when magnifying optics such as microscopes and telescopes are used: safety limits may be exceeded and class 3 dangers may be possible.

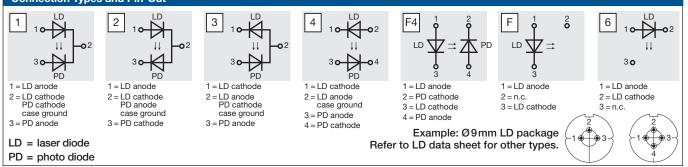

Class 2: Visible laser light (400 - 700 nm) with <1 mW continuous wave (CW) and/or <0.25 s exposure time (with an energy limit according to the standard) is considered to be safe. Radiation either side of the 400-700 nm range is considered to be class 1.

Class 2M: As for class 2, except when magnifying optics such as microscopes and telescopes are used.

Class 3R: If handled carefully, the laser is considerd safe because only a low risk of injury exists. Visible CW lasers in Class 3R are limited to 5 mW. For other wavelengths and for pulsed lasers, other limits apply.

Class 3B: Direct exposure is hazardous for the eye, but diffuse reflections such as from paper are not harmful. The limits apply to wavelengths and to operation mode (as for CW and pulsed lasers). Laser safety goggles are absolutely required when a direct view of the laser beam is at all possible. Class-3B lasers must be equipped with a isolating key switch and a safety interlock.

Class 4: Every type of laser beyond class 3B.



Schäfter+Kirchhoff GmbH

11-2014 E 91

Laser Diodes for Modular Laser Diode Collimating Systems (page 77ff)

ow) [mm]	Р	LD Ordor	Single-/	$\theta_{\rm IIFWHM}$	$ heta_{\!\scriptscriptstyle \perp{ m FWHM}}$	Cosina	Pin-	25014	FECM	00014	20014	05014	40	40	AOTE	10.0	20C,	21C,	200	2404	FORM	55D
ow	λ [nm]	[mW]	Order Code	Multi- mode	[°]	[°]	Casing	Out	25CM	55CIVI	90CM	29CM	95CIVI	PO	NO	48TE	48-0	20P	21P	22P	24PX	50BM	55B
1	Fabry	Perot																					
2	405	120	X15	S	9	19.5	5.6	F4	X	Х	Х					Х		Х	Х	Х	Х		X
3	405	20	G05	S	8.5	19	5.6	1	Х	Х	Х							Х	Х	Х	Х	Х	X
4	515	25	X18	S	9	21.5	5.6	F4	X	Х	Х							Х	Х	Х	Х	Х	X
5	635	15	H10	S	8	28	9	3	Х	Х	Х							Х	Х	Х	Х	Х	X
6	639	30	H18	S	8	31	5.6	3		Х	Х											Х	X
7	640	45	H22	S	9	21	5.6	3	Х	Х	Х							Х	Х	Х	Х	Х	X
8	659	120	M25	S	10.2	16.5	5.6	6		Х	Х					Х							X
9	660	35	M01	S	9	22	5.6	2	X	Х	Х							Х	Х	Х	Х	Х	X
10	660	60	M26	S	8.5	20.5	5.6	2	X	Х	Х							Х	Х	Х	Х	Х	X
11	685	35	M21	S	10.5	19	5.6	2	X									Х	Х	Х	Х		
12	685	50	H13	S	8.5	21	5.6	2	X	Х	Х							X	Х	Х	Х	Х	X
13	785	8	M10	S	11	29	5.6	3	X									Х	Х	Х	Х		
14	785	120	Q06	S	9	16	5.6	3		Х	Х											Х	X
15	825	200	M35	S	8	16	5.6	1						Х									
16	830	50	H19	S	9	22	5.6	2	X									Х	Х	Х	Х		
17	830	150	N23	S	8	16	5.6	2		Х	Х					Х							X
18	1060	50	Q05	S	10	30	9	3	X	Х	Х							Х	Х	Х	Х	Х	X
19																							
20																							
21	CircuL	.aser™	Diodes																				
22	635	5	B08	S	8	8	9	3				Х	Х					Х	Х	Х	Х	Х	X
23	635	15	B07	S	8	8	9	3				Х	Х					Х	Х	Х	Х	Х	X
24	639	35	B21	S	7.7	8	5.6	3				Х	Х					Х	Х	Х	Х	Х	X
25	658	35	B09	S	8	8	5.6	2				х	х					Х	Х	Х	Х	Х	Х
26	658	130	B29	S	10	10	5.6	2				Х	Х										X
27	690	35	B12	S	8.5	8	5.6	2				Х	х					Х	Х	Х	Х	Х	X
28	785	90	B32	S	9	9	5.6	3				Х	Х					Х	Х	Х	Х	Х	X
29	828	150	B16	S	7	7	9	3				х	х										х
30																							
31	DFB /	DBR	(S* narrow	emissior	h bandv	vidth be	cause of int	earated	aratino	 ג)													
32	1065	120	FB02	S*	11.5	30	9	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Х		Х						
33	1305	6	M06	S*	25	30	5.6	4							х	х							
34	1550	6	M15	S*	25	30	5.6	4							X	X							
35	1850	5	sold by manu-	S*	30	50	TO5	4							X		х						
36	1900	5	facturer ** sold by manu-	S*	30	50	TO5	4							X		X						
37	2334	3	facturer ** sold by manu-	S*	20	40	TO5	4							X		X						
38	2001	5	facturer **	5											~								
39																							
40																							
40 41																							
42																							
+∠ 43	Super	lumine	scent Diod	les																			
43 44	679 ± 4		sold by manu-				9	2							Х		Х						
44 45	679 ± 4 860 ±60		facturer *** sold by manu-				9 TOW2	2							X		X						
45 46	650 ± 3		facturer **** sold by manu-				TOW2								X		X						
40 47	VCSEL	0.0	facturer ****				10002								~		~						
			sold by manu-	S	17.7		TO 46	0							Y	V							
48	760	0.3	facturer ***** sold by manu-	S	17±7		TO46	3							X	X							
49 50	780	2.5	facturer ***** sold by manu-	S	00	00	TO46	2							X	X							
50	850	8	facturer *****	S	29	29	TO46	6							Х	Х							

94 11-2014 E

Schäfter+Kirchhoff GmbH

den_LaserLines.indd • Page 94