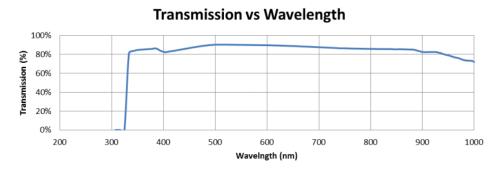


DIOPTARTM Adaptive Lenses

DP10™ DP15™


The DP™ is the newest family of our adaptive lenses, constructed from injection-molded polycarbonate, enabling a light-weight and rugged solution for numerous imaging applications. To enable low power actuation, the DP lens family utilizes an all-capacitive-load actuation subsystem. This feature makes the DP™ lenses ideal for mobile applications where electrical power is limited.

POWER CONSUMPTION:

The DPTM is an electrically-actuated adaptive fluidic lens whose focal length is controlled by the application of voltage. The lens exhibits its longest focal length when no voltage is applied; and shortest when the maximum voltage is applied. Lens actuation may be achieved by the application of 0 to +440 VDC (peak-to-peak) from any power supply intended to drive a purely capacitive load (high voltage low current). The lens draws a small amount of power when the focal length is changed, and nearly no power (< 1 mW) to maintain a specific focal length. Current draw is a function of actuation frequency and total power draw scales linearly.

SPECTRAL RANGE

The DPTM exhibits approximately 90% transmission across the visible and near-IR spectral range. Custom options are available for high transmission across other spectral bands..

Features:

- > Low aberrations independent of orientation
- ➤ Wide range of dioptric power
- > Low power consumption
- > Wide temperature range
- ➤ Large aperture
- ➤ Light weight
- Compact

Applications:

- > Surveillance cameras
- > Targeting systems
- > UAVs
- ➤ Helmet-mounted or visor displays
- ➤ Machine vision
- ➤ 2D and 3D display systems
- > LED and illumination and more...

SPECIFICATION:

	DP10™	DP15™		
OPTICAL				
Focal Length Range	50 to 1800 mm	180 to 1800 mm		
Clear Aperture	10 mm	15 mm		
Wavefront Error at 633nm	300 nm (RMS)	300 nm (RMS)		
Transmittance	>90% (with AR coating, vis spectrum standard, others avaiable)			
Frequency Range	0 - 60 Hz			
PHYSICAL				
Dimensions	50.5 mm Diameter 12.5 mm Thickness			
Weight	40 g			
Mounting	fits standard 2" lens tube			
ELECTRICAL				
Control Method	0 to 5 volts to Holochip power supply (0 to 440 volts to lens)			
Holding Power	<1 Mw			

MAGNITARTM Adaptive Lenses

MAGNITAR™

The MAGNITAR™ is a large aperture, high resolution adaptive lens with high laser power handling capabilities. The lens has a large aspect ratio (aperture to bezel) can is easily integrated into imaging systems where space is at a premium.

Applications

- ➤ Adaptive zoom (imaging, scopes/binoculars)
- Display system
- ➤ Machine vision
- ➤ Laser control

Ophthalmology

Competitive advantage

- ➤ Performance comparable to glass singlets
- ➤ Low power
- > Large aperture
- ➤ High frequency response
- ➤ High fluence performance

SPECIFICATION

OPTICAL		
Focal length range	3333mm to inf	
Clear aperture	40mm	
Wavefront error at 633nm	300nm (RMS)	
Transmittance	>90%	
Focal length variation frequency range	0 - 20kHz	
PHYSICAL		
Dimensions	Diameter: 55.9 mm Length: 29.2 mm	
Mounting Method	Standard 2" mount threads	
Weight	65 g	
ELECTRICAL		
Control Method	Current Controlled 0 to 1000 mA	
Voltage	5v	
Max power	5 W	

APX™ Adaptive Lenses

APX1007™

APX^{TM}

The APX[™] is an electrically actuated lens equally suited for use in lab environments, laser machining, machine vision, and imaging and numerous other applications. The focal length may be altered very rapidly, up to 20 kHz, by delivering a control signal of 0-5v to the system. The APX[™] is the first adaptive lens capable of providing optical performance comparable to that of a glass singlet.

Applications

- Adaptive zoom (imaging, scopes/binoculars)
- Display system
- ➤ Machine vision
- ➤ Laser control
- Ophthalmology

Competitive advantage

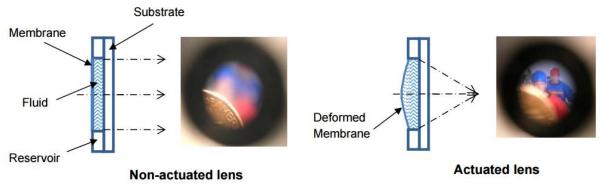
- Performance comparable to glass singlets
- > Low power
- > Large aperture
- ➤ High frequency response
- > High fluence performance

SPECIFICATION

SPECIFICATION		
OPTICAL		
Focal length range	400-1000mm	
Clear aperture	10mm	
Wavefront error at 633nm	300nm (RMS)	
Transmittance	>90%	
Focal length variation frequency range	0 - 20kHz	
PHYSICAL		
Dimensions	Diameter: 30.5 mm Length: 29.2 mm	
Mounting Method	Standard 1" mount threads	
Weight	37 g	
ELECTRICAL		
Control Method	0 to 5 power supply (0 to 440 volts to lens)	
Holding power	<.1 mW	

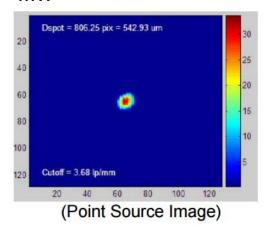
manually-adjustable variable-focal length fluidic lens

APL1050™



■ APLTM

The APL™ was the first product released and provides a useful addition to any optics lab's toolbox of lenses. The APL™ is a manually-adjustable variable-focal length fluidic lens. By rotating the outer ring of the lens, the focal length may be adjusted, allowing the lens to replace a plethora of traditional singlets, making the APL™ is ideal for rapidly prototyping new optical systems without the need for host of static lenses.


■ How it work

A lens core of the APLTM-1050 includes a lens fluid, an AR-coated and polished glass substrate, and a transparent elastomeric membrane. The highly-inert and noncompressed optical fluid is hermetically sealed inside the lens core. The lens core is encased in a housing that includes an actuation mechanism and angular markings. A portion of the lens core extends outside of the housing and has a ring-shaped grip for rotary manual actuation. Rotation of the grip changes pressure in the lens core. The resulting change in the membrane radius of curvature is observed as a change in focal length of the lens.

■ MTF

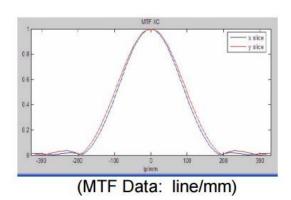
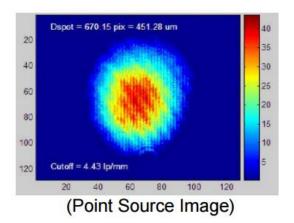



Fig 1. Actual data of MTF of APL-1050 @ Focal Length 35.6mm, λ =532nm

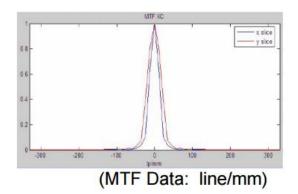
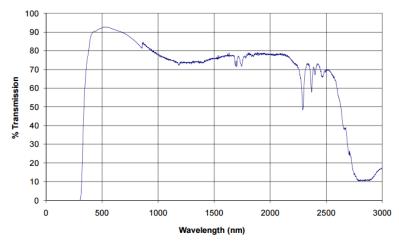
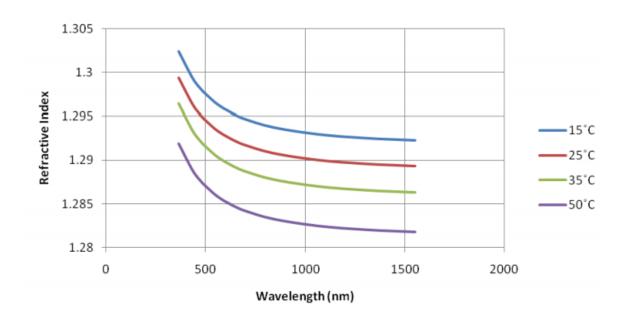



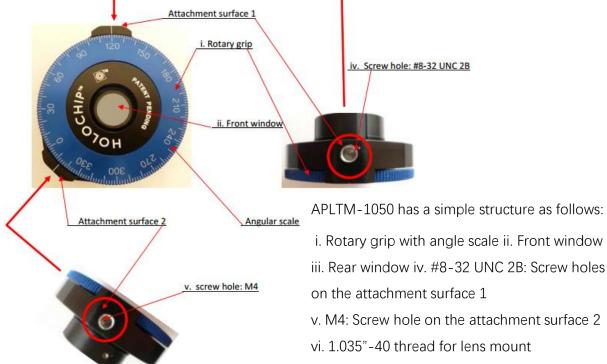
Fig 2. Actual data of MTF of APL-1050 @ Focal Length 650mm, λ =532nm

■ Transmission Curve


Transmission for the APL-1050. Note, the front window on the APL includes a visible-wavelength anti-reflection coating. Higher transmission at UV and near-IR wavelengths is possible with custom coatings.

■ Refractive Index

	Source of Spectral Line	Wavelength (nm)	Lens polymer @25°C
	g	g: 435.84	1.29632
	F'	F': 479.99	1.29502
Refractive	F	F: 486.13	1.29487
Index	e	e: 546.07	1.29361
	d	D: 587.562	1.29296
	D	D: 589.3	1.29293
	C'	C': 643.85	1.29225
	С	C: 656.27	1.29212
Abbe #		vd	106.81
		ve	106.16
dn/dT			Liquid
			15°C to 50 °C
			-0.0003


Refractive index of the APL lens fluid at typical spectral lines.

Refractive index of the APL lens fluid of at 15, 25, 35 and 50 °C. Fluids with different indexes are available with custom order.

Description of Parts

v. M4: Screw hole on the attachment surface 2

vi. 1.035"-40 thread for lens mount

Applications

Replacement for glass singlets Adaptive Illumination systems Optical system prototyping Ophthalmology

SPECIFICATION:

OPTICAL			
Focal length range	20 to 1000 mm		
Clear aperture	10 mm		
Wavefront error at 633nm	300nm (RMS)		
Transmittance	>90%		
PHYSICAL			
Dimensions	Diameter: 45.7 mm Length: 19.1 mm		
Mounting Method	#8-32 screw, M4 screw, 1" lens mount threads		
Weight	54 g		