

Laser Power Sensors

POWER & ENERGY

Power & Energy Meters

> USB/RS Power Sensors

DB-25 Power Sensors

USB/RS Energy Sensors

DB-25 Energy Sensors

Custom & OEM

BEAM DIAGNOSTICS

CALIBRATION & SERVICE

> Laser Cross-Reference

> > Model Name Index

PowerMax-Pro 150F HD and PowerMax-Pro 150 HD

PowerMax-Pro USB and RS sensors incorporate LabMax-Pro instrumentation directly within the sensor cable. Similar to other Coherent USB and RS sensors, this configuration offers a smaller form factor for use inside laser processing systems or production lines. Additionally, the cost of annual calibration is half that of a separate meter and sensor system. The PowerMax-Pro USB and RS sensors operate with LabMax-Pro PC applications software (included).

PowerMax-Pro (Patent #9,012,848) represents a dramatic technological advancement in laser power sensing that utilizes a thin-film detector only microns thick which rapidly senses thermal changes due to incident laser energy. The result is a measurement response time below 10 μs , as compared to over 1 second for traditional thermopiles. These detectors can operate at high power over a spectral range as broad as 355 nm to 11 μm , and incorporate a large 30 mm x 30 mm active area.

The high response speed of PowerMax-Pro sensors is particularly advantageous in a wide range of commercial and medical applications. It enables nearly instant measurement of CW laser power, resulting in increased throughput, and also supports high resolution analysis of modulated laser pulse shapes resulting in improved laser characterization and process control.

Features

- Enhance productivity and quality while improving measurement speed
- · Measures power in tens of microseconds
- High power up to 150W
- Supports lasers from UV to Far-IR wavelengths
- Capable of tracing the individual pulse shape of modulated and long pulse lasers
- Large 30 x 30 mm active area

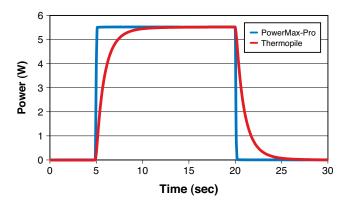
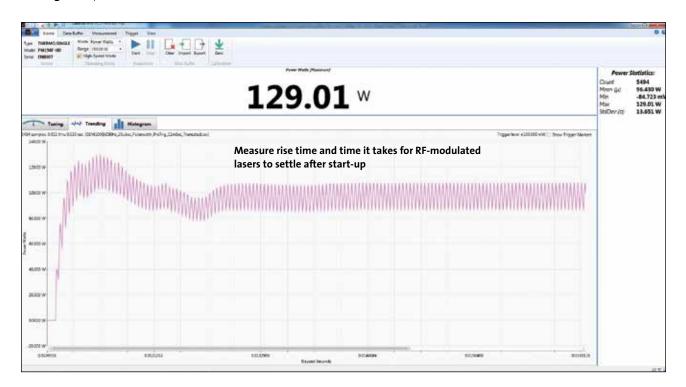


Figure 1: The rise time of a typical mid-power thermopile (30W) compared with the PowerMax-Pro

Laser Power Sensors

A dramatic technological advancement from Coherent has yielded a completely new type of fast response power detector. The high response speed is particularly advantageous in commercial applications where it enables CW laser power to be sampled faster and more frequently; with modulated sources it delivers peak power and temporal pulse shape data, from which pulse energy can be integrated. This real-time feedback can be used to improve laser system throughput and quality, and to improve process precision, with minimal engineering investment.

In contrast to the traditional, radial flow thermopile, which has a sensing time constant value of several seconds, the time constant for PowerMax-Pro is in the microsecond range.


This enables the sensor to provide an essentially instant power measurement (Figure 1). The PowerMax-Pro sensor preserves the main benefits of the traditional thermopile architecture, namely large active area (30 mm x 30 mm), wide dynamic range (50 mW to 150W), high damage resistance (14 kW/cm²) and broad wavelength range (300 nm to 11 µm).

The response speed of PowerMax-Pro sensors allows users to move beyond just measuring average power, and enables analysis of the temporal pulse shape and peak power of modulated lasers with pulse lengths greater than 10 μ s. These pulses can then be integrated to calculate individual pulse energy.

The following figures demonstrates PowerMax-Pro high speed analysis feature being used to track the power output of an RF-modulated CO2 laser from the time the laser is first turned on until the laser stabilizes:

Application: Engraving, Light Cutting **Laser:** 25 kHz RF-modulated CO₂ laser

Pulse Length: 20 µsec

POWER

Power & Energy Meters

> USB/RS Power Sensors

DB-25 Power Sensors

USB/RS Energy Sensors

DB-25 Energy Sensors

Custom & OEM

BEAM DIAGNOSTICS

CALIBRATION & SERVICE

> Laser Cross-Reference Index

Laser Power Sensors

Application: Engraving, Light Cutting, Marking **Laser:** CO₂

Wavelength: 10.6 µm

POWER

& Energy Meters

USB/RS

Power Sensors

DB-25 Power

Sensors

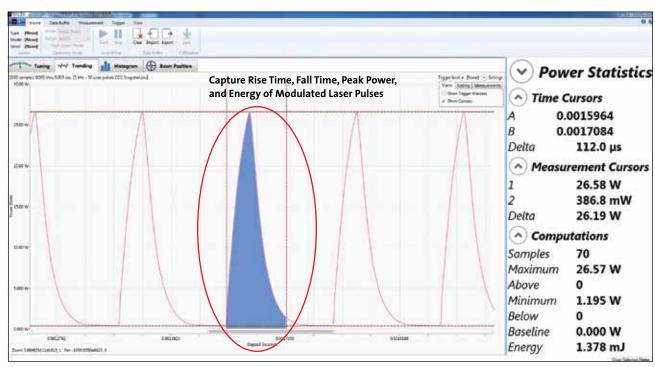
USB/RS

Energy Sensors

DB-25 Energy

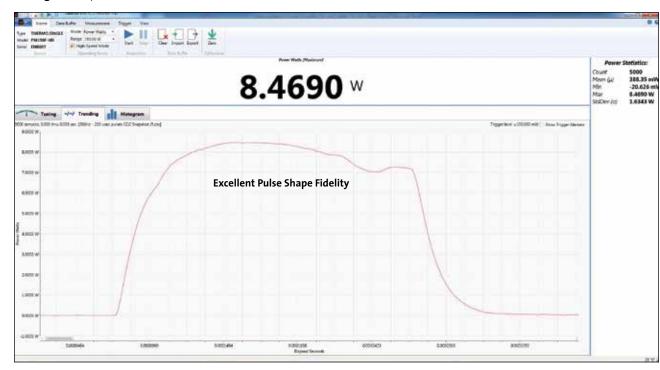
Sensors

Custom & OEM


BEAM DIAGNOSTICS

CALIBRATION & SERVICE

Laser Cross-Reference

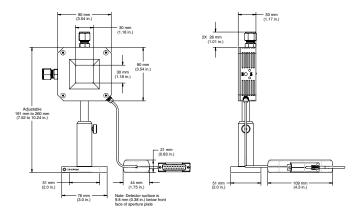

> Model Name

Index

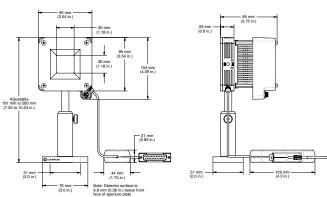
Application: Cutting, Drilling **Wavelength:** 10.6 µm

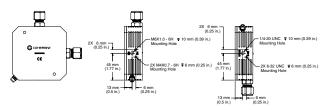
Pulse Length: 1 msec Laser: CO₂

Read more about PowerMax-Pro technology fundamentals on page 5. Further details about high speed analysis are available on the LabMax-Pro section on pages 10 to 13.

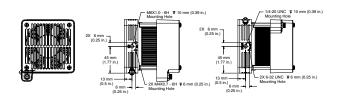


100 mW to 150W


Device
Specifications


PowerMax-Pro 150 HD	PowerMax-Pro 150F HD	
355 nm to 1100 nm;	355 nm to 1100 nm;	
9 µm to 11 µm	9 µm to 11 µm	
100 mW to 150W		
100 mW to 17W	100 mW to 150W	
170		
65 (air-cooled)	150 maximum	
<	(1	
<	4	
<	9	
0.2 (150W)		
1	4	
700 (10 ns; 355 nm)		
≤	10	
Н	ID	
30:	x 30	
2.0 (1.0 mm - up to 3% error)		
<u>+</u>	-2	
<u>+</u>	=3	
<u> </u>		
2.5 mm beam) <u>±</u>		
8	10	
Water/Air (intermittent)	Fan	
DB25		
2.5m (8.2 ft.)		
1266709 1266708		
	355 nm to 1100 nm; 9 µm to 11 µm 100 mW to 150W 100 mW to 17W 17 65 (air-cooled) 30: 2.0 (1.0 mm - 4 2.5 mm beam) 8 Water/Air (intermittent) Di 2.5 m (1.0 mm - 10	

PowerMax-Pro 150 HD



PowerMax-Pro 150F HD

Toll Free: (800) 343-4912

Fax: (503) 454-5727

POWER & ENERGY

Power & Energy Meters

USB/RS Power Sensors

DB-25 Power Sensors

USB/RS Energy Sensors

DB-25 Energy Sensors

Custom & OEM

BEAM DIAGNOSTICS

CALIBRATION & SERVICE

> Laser Cross-Reference

Device

Specifications

PowerMax-Pro HP Sensors

1W to 15 kW

POWER & ENERGY

Power & Energy Meters

USB/RS Power Sensors

DB-25 Power Sensors

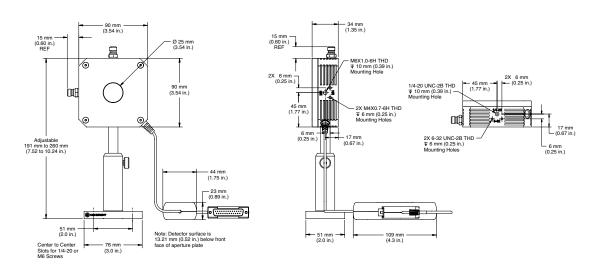
USB/RS Energy Sensors

DB-25 Energy Sensors

Custom & OEM

BEAM DIAGNOSTICS

CALIBRATION & SERVICE

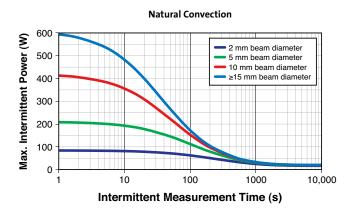

Laser Cross-Reference

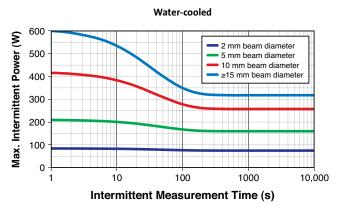
Model Name Index

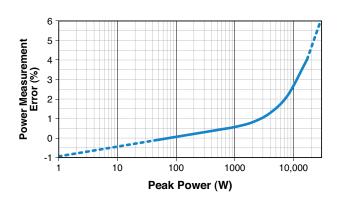
Model	PowerMax-Pro HP	
Wavelength Range	700 nm to 1070 nm;	
	10.6 µm	
Average Power Range ¹	1W to 350W	
	(22W max air-cooled, cont.)	
AA : D D D (\(\text{(AA)} \)	(75W max air-cooled, 5 min.)	
Maximum Pulsed Peak Power (W)	15000 (<10 msec burst) 1500 (continuous)	
Noise Equivalent Power (mW)	1500 (continuous)	
Standard Mode (10 Hz)	<25	
High Speed Mode (20 kHz)	<100	
Snapshot Mode (625 kHz)	<300 (low 5 kW range)	
Shapshot Mode (025 KHz)	<1.5W (high 40 kW range)	
Maximum Power Density (kW/cm²)	1.2 (150W)	
Maximum Peak Power Density (kW/cm²)	50 (1 ms; 1064 nm)	
Maximum Energy Density (J/cm²)	30 (3 ms; 755 nm)	
Rise Time (µs)	≤10	
Fall Time (µs)	≤10	
Detector Coating	HD	
Diffuser	ZnSe	
Active Area (mm)	25 dia.	
Minimum Beam Size (mm)	Set by damage threshold	
Maximum Beam Size² (mm)	18	
Calibration Uncertainty (%)(k=2) at 810 nm	±2	
Spectral Compensation Accuracy (%)	±5	
Power Linearity³ (%)	±2 (1W-10 kW)	
	3-10 (10-15 kW)	
Spatial Uniformity (%)	±5	
(center 64% of aperture; 2.5 mm beam)		
Calibration Wavelength (nm)	810	
Cooling Method	Water/Air (intermittent)	
Cable Type	DB25	
Cable Length	2.5 m (8.2 ft.)	
Part Number	1286588	

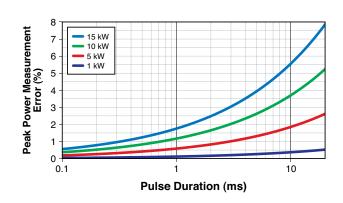
¹ Beam size dependent. See steady-state and intermittent power charts.

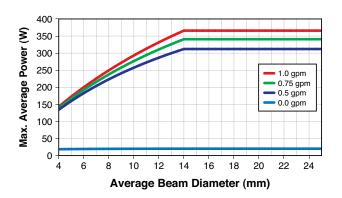
PowerMax-Pro HP


² See spatial uniformity and beam diameter charts for larger beams.


 $^{^{\}rm 3}$ Beam size and pulse length dependent. See peak power and pulse length charts.


1W to 15 kW


PowerMax-Pro HP Intermittent Average Power



PowerMax-Pro HP Measurement Error with Peak Power and Pulse Length

PowerMax-Pro HP Maximum Steady-State Average Power

POWER & ENERGY

Power & Energy Meters

USB/RS Power Sensors

DB-25 Power Sensors

USB/RS Energy Sensors

DB-25 Energy Sensors

Custom & OEM

BEAM DIAGNOSTICS

CALIBRATION & SERVICE

Laser Cross-Reference Index

Device

Specifications

PowerMax-Pro USB/RS HD Sensors

200 mW to 150W

POWER & ENERGY

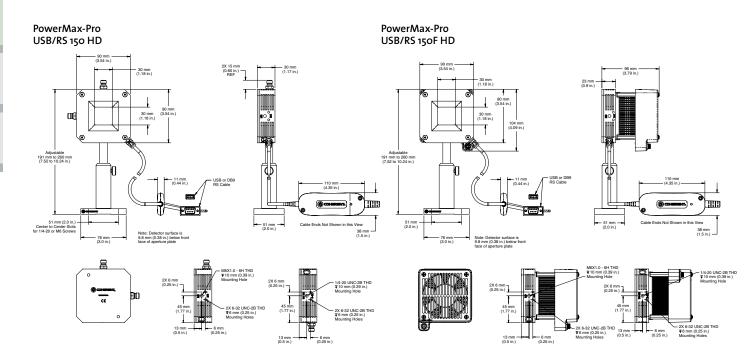
Power & Energy Meters

USB/RS Power Sensors

DB-25 Power Sensors

USB/RS Energy Sensors

DB-25 Energy Sensors


Custom & OEM

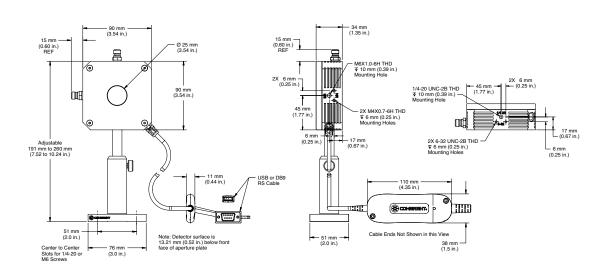
BEAM DIAGNOSTICS

CALIBRATION & SERVICE

Laser Cross-Reference

Model	PowerMax-Pro USB/RS 150 HD	PowerMax-Pro USB/RS 150F HD		
Wavelength Range	355 nm to 1100 nm;	355 nm to 1100 nm;		
	9 µm to 11 µm	9 µm to 11 µm		
Average Power Range	200 mW to 150W	200 mW to 150W		
	(17W max air-cooled, cont.)			
	(65W max air-cooled, 5 min.)			
Maximum Pulsed Peak Power (W)		200		
Noise Equivalent Power (mW)				
Standard Mode (10 Hz)	<4			
High Speed Mode (20 kHz)	<8			
Snapshot Mode (625 kHz)	<16			
Maximum Power Density (kW/cm²)	o.2 (150W)			
Maximum Peak Power Density (kW/cm²)	14			
Maximum Energy Density (J/cm ²)	0.700 (10 ns; 355 nm)			
Rise Time (µs)	≤10			
Fall Time (µs)	≤10			
Detector Coating	HD			
Diffuser	N	lone		
Active Area (mm)	30 x 30			
Minimum Beam Size (mm)	2.0			
	1.0 (up to 3% error)			
Maximum Beam Size (mm)	30			
Calibration Uncertainty (%)(k=2) at 810 nm	±2			
Spectral Compensation Accuracy (%)	±5			
Power Linearity (%)	±3			
Spatial Uniformity (%)(center 75% of aperture	; 2.5 mm beam)	±5		
Calibration Wavelength (nm)		810		
Cooling Method	Water/Air (intermittent)	Fan		
Cable Type	USB/RS-232			
Cable Length	4.2m (13.8 ft.)			
Part Number	1295921 (USB)	1295920 (USB)		
	1295923 (RS-232)	1295922 (RS-232)		

PowerMax-Pro USB/RS HP Sensors


3W to 2 kW

Device
Specifications

Model	PowerMax-Pro USB/RS HP 2K	
Wavelength Range	700 nm to 1070 nm; 10.6 μm	
Average Power Range¹	3W to 350W (22W max air-cooled, cont.) (75W max air-cooled, 5 min.)	
Maximum Pulsed Peak Power (W)	2000	
Noise Equivalent Power (mW)		
Standard Mode (10 Hz)	<150	
High Speed Mode (20 kHz)	<200	
Snapshot Mode (625 kHz)	<300	
Maximum Power Density (kW/cm²)	1.2 (150W)	
Maximum Peak Power Density (kW/cm²)	50 (1 ms; 1064 nm)	
Maximum Energy Density (J/cm²)	30 (3 ms; 755 nm)	
Rise Time (µs)	≤10	
Fall Time (µs)	≤10	
Detector Coating	HD	
Diffuser	ZnSe	
Active Area (mm)	25 dia.	
Minimum Beam Size (mm)	Set by damage threshold	
Maximum Beam Size ² (mm)	18	
Calibration Uncertainty (%)(k=2) at 810 nm	±2	
Spectral Compensation Accuracy (%)	±5	
Power Linearity ³ (%)	±2	
Spatial Uniformity (%) (center 64% of aperture; 2.5 mm beam)	±5	
Calibration Wavelength (nm)	810	
Cooling Method	Water/Air (intermittent)	
Cable Type	USB/RS-232	
Cable Length	4.2 m (13.8 ft.)	
Part Number	1315456 (USB) 1315457 (RS-232)	
Beam size dependent. See steady-state and intermittent power charts.		

¹ Beam size dependent. See steady-state and intermittent power charts.

PowerMax-Pro USB/RS HP 2K

POWER & ENERGY

Power & Energy Meters

USB/RS Power Sensors

DB-25 Power Sensors

USB/RS Energy Sensors

DB-25 Energy Sensors

Custom & OEM

BEAM DIAGNOSTICS

CALIBRATION & SERVICE

Laser Cross-Reference Index

> Model Name Index

Toll Free: (800) 343-4912 • Tel: (408) 764-4042 • Fax: (503) 454-5727 31

 $^{^{2}\,}$ See spatial uniformity and beam diameter charts for larger beams.

 $^{^{\}rm 3}\,$ Beam size and pulse length dependent. See peak power and pulse length charts.