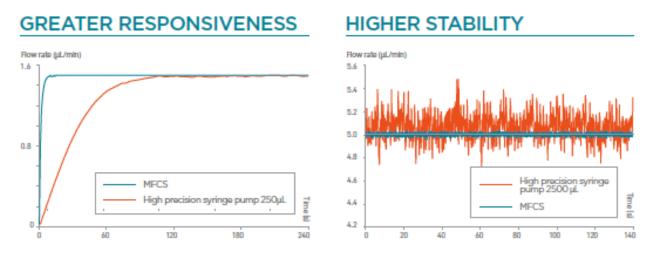

三: 主要组成部分详述


3.1精密压力进样泵

FASTAB™ 技术

目前市场上的微流体进样系统有注射泵、蠕动泵、活塞泵等。这些进样系统在实现控制纳升量级的流体时十分无力,常出现滞后、稳定时间长、重复性差、脉冲效应等一系列问题。

FLUIGENT 采用 FASTAB™ 专利技术,开发的微流体进样系统 (MFCS- EZ) 很好的解决了上述问题。

MFCS控制器可以对任何流体在复杂的微通道内进行全自动控制,压力控制范围可以从负800mbar至正7Bar,流速从每分钟几亚纳升至几百 微升。

与传统的流体控制技术相比,MFCS技术具有无与伦比的稳定性和瞬时响应速度。

三: 主要组成部分详述

3.1精密压力进样泵

技术规格:

- ✓可选压力范围: 0-25mbar, 0-69mbar, 0-345mbar, 0-1000mbar, 0-7000mbar,
- -25mbar-0, -69mbar-0, -345mbar-0, -800mbar-0
- ✓压力分辨率: 量程的0.03%
- ✓压力稳定性: 小于0.1%
- ✓通道数: 1-16通道可选
- ✓系统响应时间: 小于40ms
- ✓压力输入接口: 6mm外径
- ✓储液池个数: 16个
- ✓可用气体:空气,N2、CO₂,Ar等
- ✓电源: 24V直流、0.6A
- ✓耗电功率: 15W
- ✓工作温度: 5-40℃

应用领域:

细胞细胞操控与分选、灌注装置、片上化学反应、Lab-on-chips 和MicroTas、乳浊液/微滴、微尺度样品制备、生物测试、micro-ELISA、流变学研究、光纤测试等。

--世界上最精密的压力驱动型微流体进样系统

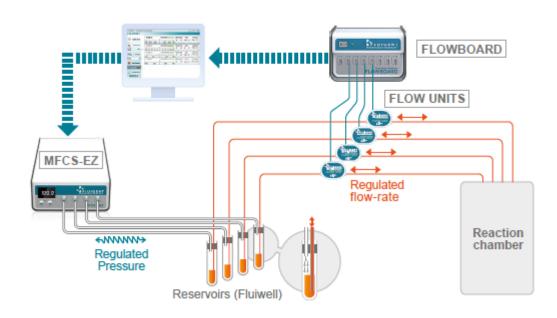
三: 主要组成部分详述

3.1精密压力进样泵

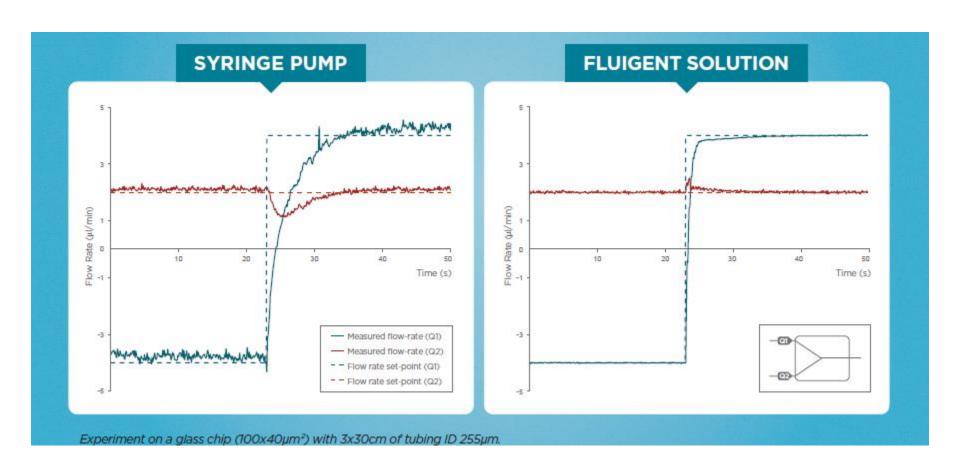
主要指标	MFCS-EZ	Syringe pump	
推动方式	压力推动	步进电机(机械推动)	
通道数量	1-4通道任选	1	
通道独立性	1-4通道可独立控制	无法实现每路径独立控制	
可读取最小流量	2 nl	-	
响应时间	< 200 ms	4 s	
最小压力	25 mbar	2 mbar	
精准度/稳定性	< 0.1%(全量程)	+/- 0.002bar.5%.10%(不同压力下精 度不同)	
压力范围	-800 mbar-7 bar(可根据不同的需求选择不 同的压力范围)	0 – 10 bar (只有一种压力范围)	
是否可以进行流量 监控	Yes	No	
是否可配置负压范 围	Yes	No	
可升级性	可对通道数量和压力范围进行升级,不改变 硬件外形。	无法升级	
控制软件	基于LabVIEW软件操作系统,采用多种方法 实现对压力、流量、时间等参数的调节及与 其他仪器的连用与自动控制。	一般通过手动旋钮控制,无法编程	

三: 主要组成部分详述

3.2流量监测模块(可选)

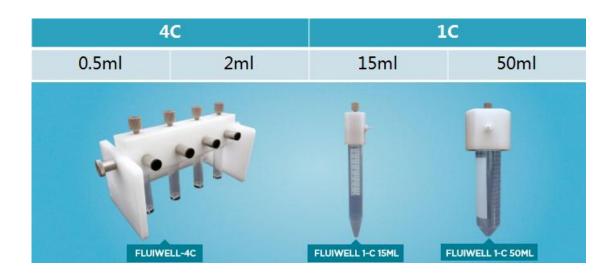

产品特色:

- ✓流速测量范围7.5 nl/min至5ml/min
- ✓XS、S、M、L、XL五种量程规格可选
- ✓可与任何流量控制器兼容
- ✔简易的操作和安装过程
- ✓超高的精确度
- ✓可以对流体进行控制(需要FRCM软件)


FLOW UNIT	xs	s	М	L	XL
Sensor inner diameter	25 μm	150 µm	430 μm	1.0 mm	1.8 mm
Maximum pressure	200 bar	200 bar	100 bar	12 bar	5 bar
Wetted materials	PEEK & Quartz Glass	PEEK & Quartz Glass	PEEK & Borosilicate Glass	PEEK & Borosilicate Glass	PEEK & Borosilicate Glass
Calibrated Media	Water	Water	Water	Water	Water
		IPA	IPA	IPA	
Range	O±1.5 μL/min	O±7 μL/min	O±80 μL/min	O±1 mL/min	O±5 mL/min
		0±70 μL/min	O±500 μL/min	0±10 mL/min	
Accuracy (m.v. = measured value) Accuracy also applies to negative values	10% m.v. above 7.5 nL/min	5% m.v. above 0.42 μL/min	5% m.v. above 2.4 μL/min	5% m.v. above 0.04 mL/min	5% m.v. above 0.2 mL/min
		20% m.v. above 4.2 µL/min	20% m.v. above 25 µL/min	20% m.v. above 0.5 mL/min	
	7.5 nL/min below 70 nL/min	21 nL/min below 0.35 µL/min	0.12 μL/min below 2.4 μL/min	1.5 µL/min below 0.03 mL/min	10 μL/min below 200 μL/min
		210 nL/min below 4.2 µL/min	5 μL/min below 25 μL/min	100 µL/min below 0.5 mL/min	

三: 主要组成部分详述

3.3恒流控制软件FRCM(可选)



全球唯一的流体控制解决方案,具有无与伦比的响应性和均匀的流体网络稳定性,将各通道之间的相互干扰减少到最低。

三: 主要组成部分详述

3.4储液池

储液池可以选择多种材料,以满足生物相容性,防腐蚀性,抗温度老化等实 验环境的要求。