DWG-5088A 中文在线阳床钠度仪

册

上海博取仪器有限公司

	1
1.1 基本功能	1
1.2 主要特点	1
1.3 版本、符号、术语	2
第一音 工作百理	1
カーキ エド原理	
2.1 测量原理	
2.2 取样要求	5
第三章 安 装	1
3.1 DWG-5088A 型钠表安装方式	1
3.1.2仪表壁挂式安装	
3.2 管道连接	
3.4 钠电极的调整和安装	
3.5 参比电极安装	4
3.6 安装 ATC 温度探头	6
3.7 电极的使用	6
3.7.1 电极的安装	6
3.7.2 电极使用	
3.8 试剂瓶的安装	
3.9 碱化剂	
2.10次見,田井	
3.10 沉重响卫	
3.10 沉重调卫	
3.10 沉重调节	
 3.10 沉重调节	
 3.10 沉重调节	
 3.10 沉重调节	
 3.10 沉重调节	
 3.10 流重调节. 3.11 电气安装. 第四章 仪器的使用	
 3.10 沉重调节	
 3.10 沉重调节	
 3.10 流重调节. 3.11 电气安装 第四章 仪器的使用	8
 3.10 沉重调节	8 9 10 10 10 10 10 10 11 11 12 12 12 12 12 13 14 14
 3.10 流重调节	
 3.10 流重调节. 3.11 电气安装. 第四章 仪器的使用	8 9 10 10 10 10 10 10 11 11 12 12 12 12 12 13 14 14 14 14 14 15
 3.10 流重调节	
 3.10 流重调节	8

5.2.	2 离线标定	17
输入	入实验室表测量值后按确认键	17
离约	钱标定功能就是一个简单的单点标定,用实验室方法为仪表赋一个值。离线标定实际」	Ŀ
是扎	皆从仪表水路的旁路阀中取样水用实验室表测量	17
5.2.	3 手动输入 E ₀ 、S	18
5.2.	4 空白校验	18
5.3"历	史曲线"子菜单	18
5.4"诊	断"子菜单	20
5.4.	1 记事本	20
5.4.	2"E ₀ .S 查询"	20
5.5 "4	隹护"子菜单	21
5.5.	1 开机维护	21
5.5.	2 手动电流源	21
5.5.	3 密码修改	22
5.5.	4 系统维护	22
5.6 "	参数"子菜单	23
5.6.	1 参数显示	23
5.6.	2 参数修改	23
5.7 空	白校验	24
5.8 "J	-家联系"子菜单	24
第六章	测试与模拟调试	25
二次表	毛的模拟调试	25
第七章	维护、维修	26
注意:		28
第八章	技术指标	29
第九章	订货与联系	29

第一章 概况

DWG-5088A 中文在线阳床钠度仪是本公司在吸收了目前国际、国内钠度仪的经验和长处的基础上,设计出的能全面替代进口产品,智能化程度高,适用于中国市场的全新一代 钠度仪;采用新型的气态碱化器,碱化效果好,维护量小;在一些碱化要求较高的使用场 合(如阳床失效监测),用本公司改进型专用水路,完全可以保证碱化效果;全中文显示, 界面友好,给现场使用带来方便。

该产品可广泛适用于电力系统、化工系统、制药工业等部门中阳床出水、除盐水、补给水、凝结水、蒸馏水及阳床等介质中微量钠的连续测量。

1.1 基本功能

具有自动 pH 调节系统:

- ◆ 进水(除盐水)pH值4.5~7之间,经标准水路调节系统后,测量用水样pH值≥10.5;
- ◆ 进水(除盐水)pH值2.5~4.5之间,经改进型专用调节系统后,测量用水样PH值≥
 10.5。
- ◆ 既可采用两点标定也可采用一点标定,确保了低浓度测量的准确性。
- ◆ 采用本公司生产的高性能测量和参比电极,保证了系统的一致性和良好的匹配。电极 保用一年。
- ◆ 全智能化,采用单片微处理机完成钠浓度测量、温度测量和补偿,没有功能开关和调 节旋钮。

1.2 主要特点

● 全中文显示,操作方便

全中文显示,界面友好:采用高分辨度的点阵图型液晶显示模块,所有的数据、状态和操作提示都是中文显示,完全没有厂家自己定义的符号或代码。

简单的菜单结构,文本式的人表对话:与传统的仪表相比,DN2300功能增加了很多,但由于采用了分门别类的菜单结构,类似微机的操作方法,使用起来更清晰、方便。不必记忆操作步骤和操作顺序,可以不用说明书,按照屏幕上的提示就可操作。

多参数同时(屏)显示:在一屏上同时显示钠浓度、输入 mV 数、输出电流、温度、时间和状态。主显示以 10×10mm 规格显示钠浓度, 醒目, 可视距离远; 6 个副显示以 5×5 的规格显示输出电流、温度、状态、星期、年月日和时分秒等, 以满足用户的不同使用习惯和提供二次表的时间基准。

● 功能多而实用

历史曲线和数字记录仪功能: 二次表每隔 5 分钟自动存储一次测量值,可连续存储一个月的钠浓度。在一屏上同时提供"历史曲线"显示和"定时定点"查询两种方式,"历史曲线"从总体上反映水质的变化趋势和过程,很利于发现问题和解决问题。"定时定点"功能将得到特定点、特定时间的被测钠浓度。

记事本功能: 忠实记录仪表的操作使用情况和报警的发生时间,便于管理。

电极的研究功能:存储 50 次标定的方式、时间和结果,以分析电极的变化规律。

数字时钟功能:显示当前的时间,为数字记录仪功能提供时间基准。

背光功能: 可在光线昏暗或彻底没光亮的环境下使用,根据温度变化,自动调节对比度,也可人工调节,以合符个人的习惯。

防程序飞死: 独有的"看门狗"程序,确保仪表不会死机,这是在线式仪表的基本要求。

输出电流设置与检查功能:手动电流源功能,可检查和任意设定输出电流值,方便检测 记录仪和下位机。

软件设定电流输出方式: 软件选择是 0~10mA 或 4~20mA 输出,而不需用户拨任何开关。

标定功能: 设有 E0, S 标定、两点标准添加,菜单自动提示,人机对话,按提示操作, 方便准确。

● 碱化效果好,整套系统维护量小。

使用钠度仪进行微量钠监测时,样水 PH 必须>10,并要保证连续、稳定的碱化效果。 2300 系列钠度仪选用未经稀释的二异丙胺作碱化试剂(用二异丙胺作碱化剂,能保证碱 化剂浓度的恒定,不会产生危险的废物)。

不同的使用场合,样水的 pH 值不一样,对样水的 pH 值在 3 左右且酸性较强的,采用 标准调节系统碱化,无论如何不能使测量水样的 pH 值达到 10 以上。遇到这种情况,2300 系列钠度仪特别配有改进型专用调节系统,经过多次实验;样水在流速约 80m1/min、电导 率≪20 µ s/cm、温度 20-30℃、酸度 <50 ppm (CaCO₃)、PH 值约为 2.5 左右的情况下,本 套碱化系统,经改进型专用调节系统碱化后,进入测量池的样水 PH 值均≥10.5 。

1.3 版本、符号、术语

由于用户的特殊要求、软件的不断完善和功能的增加,软件会不断的变化和升级换代,

-2-

软件和说明书都有版本号。在说明书的封面上有版本说明,二次表在开电运行时和复位后 会有版本说明。用户在使用时,一定要注意用户说明书与仪表软件的版本应一致。1.0版从 1999年1月1日开始执行。特殊版本有专门说明。

使用 2300 系列仪表会碰到一些新的名词和术语, 现说明如下:

E₀:本使用手册和显示屏上的 E₀代表钠电极的零电位。

S:本使用手册和显示屏上的 S 代表钠电极的斜率。理论值为 1(相当于 59.16mV/µg/L)。

第二章 工作原理

2.1 测量原理

图 1 是仪表的样水流程方框 图,图 2 表示在正常测量状态下的 样水流程图。

如图 2 所示,样水进入仪表, 流经进口阀 1、旁路过滤器 2、压 力调节器 3、流量计 4 和节流管 5, 然后样水流经流动池复式接头 11,进入试剂扩散瓶 14,在次进 行样水的 pH 值调节。经过 pH 值调 节后的样水再流回流动池复式接 头 11,同时由空气泵 18 泵入的空 气也在此处进入流动池复式接头, 以保证彻底地混合样水和快速的 电极响应。然后样水流经钠电极 8,参比电极 7、温度探头 9,这三 支电极的探头位于流动池 11 的顶 部。最后,样水流回流动池复式接 头 11,进入直通大气的排污管 19。

说明.		
1、进口阀	2,	分流过滤器
3、压力调节阀	4,	流量计
5、节流管	6,	电解液瓶
7、参比电极	8,	钠电极
9、温度探头		
11、流动池复式	接头	\$
14、试剂扩散瓶		
18、空气泵		
19、排污管		
36、流量阀		
37、旁路阀		

图2 正常测量时流程图

钠电极对钠离子浓度变化的响应符合对数关系。响应可用能斯特方程描述如下:

 $E=E_0+2.3(RT/nF)*LOG(C/Ciso)$

式中:

E--测量的电极电位 mV E₀--当 C=Ciso 时电极电位 mV

R-理想气体常数 T--样水的绝对温度(K=273+t) K

n--离子的价态(钠离子的价态为+1)

C一钠离子有效浓度 Ciso一当电位 E 与温度无关时的钠离子浓度

以上方程式表明,所测量的电位随着温度和相关离子浓度的变化而改变。为了消除样水 温度波动造成的误差,2300系列钠表的微处理机不断地按 ATC 温度探头所提供的数据修正 温度补偿值。

从能斯特方程可以知道,在25℃时钠离子选择电极对十倍离子浓度变化的理论响应值 为59.16mV。这被称为电极斜率(S)。然而大多数电极并不表现为理论斜率。因此,需对 仪表标定以确定其真实斜率值。在使用中,两个标准溶液就可以为微处理机计算出电极的 这是斜率值和E0提供必要的数据。

在测量低浓度钠离子时,为了消除氢离子的干扰,DWG-5088A型钠表将样水的 pH 值调 节到 11 以上,这里的 pH 值调节是通过特殊的扩散工艺来实现的,样水流经试剂扩散瓶中 的扩散管,瓶中装有二乙丙胺溶液,试剂通过扩散管的管壁向样水中扩散从而将样水的 pH 值提高到 11 以上。

通过压力调节阀和节流管的共同作用可控制进入流动池的样水流量。调整压力调节阀, 得到一个 40cc/min 的标准流量。在正常测量期间,将流动池上的切换阀拉出以保证流动池 中样水的体积为 20mL。因此,系统的快速响应时间使由样水流速和样水体积共同决定的。 用以混合样水的空气将被循环利用,以消除由空气中所含钠盐而引起的钠污染电位。

2.2 取样要求

样水进口连接----如果样水中含有颗粒状杂质,需要预先过滤。其余的杂质将由安装在 入口阀之后的 60 目过滤器滤除。

流速----正常为 40cc/min.

压力---0.56~7Kg/cm²。对如果压力超出范围的有关水样处理细节可向我公司查询。

温度---温度必须保持在5~40℃。

钠离子含量---当用标准溶液1和2标定时,钠离子含量直接以ppm或ppb表示。

样水碱度----样水碱度不应大于 50ppm (以 CaCO₃表示)。对于碱度较高的样水,请与我 公司技术部联系。

注意: 在除盐系统再生期间,进入仪表的流量必须断开,直到大部分再生剂从除盐系统中冲洗出去为止。否则会造成流动池的严重污染,决不允许再生试剂进入流动池。

第三章 安装

3.1 DWG-5088A 型钠表安装方式

DWG-5088A 中文在线阳床钠度仪可壁挂式安装,亦可架式安装。

仪表外型尺寸

3.1.1 仪表盘嵌入式安装

注意:除去开孔处毛刺,防锈。

3.1.2 仪表壁挂式安装

注意:1)、安装仪表时,先把出水嘴拧紧在仪表测量池的下部,并且在出水嘴与测量池连接 之间装上密封圈。

2)、不能先连接软管和电源线及通讯线。

3.2 管道连接

- 为仪表选择一个位置并垂直固定,这个位置应有足够的高度以利于大气污染,并易 于在电子控制部件和标定孔附近操作。
- 2. 打好安装孔,小心地抬器仪表固定就位。在抬拉仪表时,不得拉拽仪表的流路部件。
- 3. 将排污管接到一个足够大的排水管上。
- 4. 将样水管连接到 1/4 英寸管螺纹接头上,建议在取样点上装一个截止阀。

3.3 试剂瓶和扩散管的安装(见电极安装试剂瓶的安装图)

警告:二乙丙胺是危险品。应配备防护眼镜和手套。

- 1、从试剂扩散瓶接头13上旋下螺钉23,取下接头/试剂瓶组件。
- 2、旋下瓶盖3,从瓶上取下接头体。将扩散管6装到接头体的喷嘴式接头4上。
- 3、在通风罩内(或室外)小心地旋开试剂瓶盖。
- 4、检查扩散瓶和接头体之间的0型圈6,然后将扩散管滑入试剂瓶,并用瓶盖将接头体固定在装有二乙丙胺试剂的扩散瓶中。注意:旋转接头体至正确的位置。
- 5、检查三个0型圈8是否在流动池组件9表面的原位上。然后将接头体/试剂瓶组件 从螺杆上推向流动池,并拧紧指旋螺钉23。

3.4 钠电极的调整和安装

警告:在整个调整步骤过程中必须配带防护眼镜。

- 1、取出钠电极,小心地拆下保护帽。保留保护帽以备将来保存电极。
- 2、将钠电极浸入清洗溶液瓶中一分钟。
- 3、取出钠电极并用除盐水清洗。
- 4、将钠电极插入流动池盖上的钠电极孔内。
- 5、将标有"测量电极"的导线连接到钠电极上。
- 6、至少等待一个小时以上再标定仪表。

3.5 参比电极安装

为进一步提高 DWG-5088A 型钠表的性能,参比电极填充液已改为 0.1M CsBr (溴化铯)。 新的参比电极带有一个两盎司的填充液。DWG-5088A 型钠表的参比电极是特制的,不能与 其他参比电极换用。注意:

- 取出参比电极 7 和管组件。拆下电极底部和支臂上的保护帽。将拆下的保护帽收 存备用。检查电极内部。确保电极内至少充满一半的内填充液,否则必须更换新 的参比电极。
- 2、尽可能地将内填充液通过支臂孔甩入水池或废液池。
- 3、先将1/4英寸的软管32套在1/8英寸的管端上,然后再将另一头套在支臂30上, 软管应套在3/8~1/2英寸的位置上。
- 4、拆下内充电解液瓶 33 的瓶盖和密封垫,保持瓶体垂直。检查密封圈 34 是否正确 定位,然后将管组件的帽端头与瓶体连。此时 1/8 英寸的管子应插入到瓶子内部。
- 5、翻转电解液瓶,保持电极水平放置并使支臂孔朝上。轻轻摇动电极使电极内的空 气泡上升到电解液瓶中,同时电解液将充满电极。
- 6、用滤纸吸干参比电极的陶瓷玻璃顶。挤捏电解液瓶数秒钟,少量电解液会渗透到 玻璃表面上,说明电极流通良好。如果没有电解液出现,说明电极已堵塞需要更 换新的电极。
- 7、翻转电解液瓶并扣入固定夹 35 中。用附带的针头在瓶底扎三个通气孔。注意:如不在电解液瓶上开孔,将引起输出信号的噪声和漂移。

8、 将电极连接到标有"参比电极"的带扣电缆上,再插入流动池盖的参比电极孔内。

参比电极的装配

3.6 安装 ATC 温度探头

自动温度补偿探头(ATC)已经与电子部件连接完毕,将其插入流动池盖上另一个孔即可。

3.7 电极的使用

3.7.1 电极的安装

注: 用针将参比液瓶底刺几个小孔,以保持压力平衡。

电极安装图

3.7.2 电极使用

(一) 钠测量电极的使用

(A) 关于钠电极

钠电极是敏感的高阻抗电化学元件。为保证正确的使用,要求做到以下几点:

- ◆ 敏感玻璃球保持干净。
- ◆ 玻璃球之内无气泡。
- ◆ 电接头绝对保持干净和干燥。
- (B) 冲洗
- ◇ 冲洗:新购的 pNa 电极或久置不用的电极,用无钠水冲洗,浸泡在 5% 的 HCL 中约 10 分钟,然后用无钠水洗净,再浸泡在已碱化的 pNa 4 溶液中 4 小时,使电极有良好的性能,但不宜浸泡时间过长。
- ◆ 被污染的电极亦可用此法冲洗。
- (C) 活化
- ◇ 活化的时机:
 - 每次标定以前;
 - 当标定时,较长时间不能读出稳定值时;
 - 当电极使用时间较长,接近失效期时;活化后可继续一段时间。
- ◆ 活化方法:
 - 活化液装在塑料瓶子中,使用时,将电极插入盛装活化液的瓶中约10秒钟, 最长不超过30秒钟,然后用大量的无钠水冲洗即可。活化液最多只能用6 个月。

注意: a. 活化液有毒,不要误服或吸入阳床,皮肤短暂接触无害,但必须立即用水 冲洗。 b. 应使用本公司专用活化液,订货号: 031104

(二)参比电极的使用

参比电极是敏感的高阻抗电化学元件。本公司所配参比电极是一个双液接电极,与外接内充液连接是通过一个管子,易维护、寿命长。在使用中应注意以下几点:

- ◆ 新参比电极在使用前,应将液络部的胶裹与注液孔处的橡胶塞拔出,并将封口蜡 细心清理干净。
- ◆ 电极和通往 CsBr 容器管中无气泡。
- ◆ 电接头要绝对保持干净。

(三) 温度电极的使用

温度电极是一个不锈钠传感元件,使用时要保持电极接头、电极体的干净,电极应全 部插入测量池中方能保证传感效果。

3.8 试剂瓶的安装

3.9 碱化剂

仪器所用的碱化剂为二乙丙胺,一般在用二乙丙胺时,需将其稀释成 1:1 的水溶液,在倒入试剂瓶中,方可使用。警告:二乙丙胺是危险品。应配备防护眼镜和手套。

3.10 流量调节

首次启动 DWG-5088A 型钠表时,应在标定和使用前用样水冲洗仪表的流路一昼夜。在此期间,电子部件不需要接通电源。

- 1、打开样水进口阀1;
- 2、拉出压力调节阀3上的黑色锁环,然后调节黑色旋钮,直到流量计的浮球位于 40cc /min的读数处。推入黑色锁环以锁定此位置。
- 3、推入切换阀 12,使流动池中的样水充满至标定体积。此时,系统将不断地充满 虹吸
- 4、打开旁路阀 37,检查样水流量是否稳定。如果需要可重新调整压力调节阀。
- 5、至少等待一个小时以上再开始仪表标定。

3.11 电气安装

仪表电源、报警输出、通讯接接口、电流输出接线按下图联接。

第四章 仪器的使用

4.1 显示屏与功能键

2300 系列表选用带背景光的点阵图形式液晶显示屏,实现了图形和中文的显示,方便 用户使用。面板上有 8 个触摸式按键,见下图:

▲▼◀▶4 键为方向键,按动它们可在菜单项中向上、向下、向左和向右将光标移到 所要选的项目上。进入数据修改时,▲▼键分别增加或减小数值。连续按下不放,将加快 数据的变化度。

"退出"键是退出当前的状态。在测量态,按下退出键,将进入主菜单;进入任何一级菜单后,按下退出键将退回到上一级菜单,连续按动可一直退到测量态。除能自动调节 对比度外,还能手动调节,以满足个人的需要。

4.2 在测量模式时

状态行显示以下信息:

1. 正常 2. 高限报警 3. 低限报警 4. 温度过高 5. 斜率过高 6. 斜率过低。其中, 2~6 项以 闪烁方式显示,以提醒用户注意。

"斜率过高"指斜率 S 超过+20%, "斜率过低"指斜率 S 小于-30%。

按下**退出**键,将进入主菜单。

4.3 如何选择菜单项目

按下方向键,可控制光标的移动来选择菜单项,按下确认键就进入菜单。

①历史	曲线	⑤标 定	
2诊	断	⑥空白校验	
③维	护	⑦厂家联系	
④参	数	V3212-3. 0	

4.4 如何进行人表对话

在操作中,有许多可选项需要操作者选择,用户可根据可选项在屏幕上的相互位置关系,按动四个方向键加以选择,选中所需的项后按下确认键即可。下面是例子:

添加标液一后样液电位:
-XXX. XmV
不稳定 稳定
添加标液一后样液电位:
-XXX. XmV
不稳定 稳定
输出电流冻结在 12.50 mA
输出电流冻结在 12.50 mA 冻结 解冻
输出电流冻结在 12.50 mA <mark>冻结</mark> 解冻
输出电流冻结在 12.50 mA 冻结 解冻 输出电流冻结在 12.50 mA

左图是进入标定菜单后的人表对话框。完成了准 备工作后,要选择'稳定'时,可按下▶键,光标就跳 到'稳定'项了,如左下图。

按下◀键,光标就回跳到了'不稳定'项了,如 左图光标在'不稳定'项时,按下确认键不会有什么 变化,只有光标在'稳定'项时按下确认键,才进行 下一步。

再例:开机维护时,有左图所示的两个选项,按 动▶键,光标就移动到'解冻'项,如左图。

按下◀键,光标就回跳到了'冻结'项了,如左 上图光标在'冻结'项时,按下确认键不会有什么变 化,在'解冻'项时,按下确认键,将退出'冻结'。

4.5 如何改变数据的大小

在修改参数、设定时间等时,数据在一定范围内是可以连续变化的。这时可用▲▼键 增加或减小数值,按住不放,变化的速度将越来越快。

例如:修改"报警上限"

4.6 如何改变参数的选择

有些参数只有两个选择,不是连续变化的,这时可用◀▶键修改。 例:将'电流'从'0~10mA'改为'4~20mA'。

4.7 密码的核对与修改

为防止无关人员的误操作,对影响仪表运行的操作,如参数修改、标定和手动电流源 等功能,DWG-5088A 阳床钠度仪都设有密码加以保护。用户只有核对上了密码才可能进入。 而对系统运行无影响的操作,比如历史曲线和参数的显示等,就没有口令核对,只在记事 本上记录。

用▲▼键输入完密码后,按下确认键,如果密码 正确,即进入下一步,否则将提示密码错,如左下图。

请输入密码: 显示错误 密码错!! 增加:↑减少:↓

显示错误后,将自动退回到上一级。

出厂时,DWG-5088A 阳床钠度仪的密码与产品编号相同,本表的出厂密码为2300。

输入完毕后按"确认"

若用户觉得有必要换一个密码,可以对老密码进 行修改。

选择'维护'菜单中的'密码修改'子菜单,先 核对老密码。

请牢记新密码: 输入错后,将退; 6789 增加:↑减少:↓ 输入完新密码后,

输入错后,将退出;输入正确后,显示如下: 输入完新密码后,将提醒你牢记此密码。

4.8 菜单的超时退出

菜单有多层,一层层地进入,一层层地退出。进入菜单后,每按下一次退出键,将退 回一级,直到退到测量态为止。

一旦仪表退出测量态,进入菜单后('标定'菜单除外),内部的定时计时器将启动, 自动记录退出测量的时间长短,超过了5分钟就将自动退回到测量状态,以避免因操作不 慎,使用完后没有彻底退到测量态,造成较长时间不能进行测量。

4.9 如何手动设定温度

为满足特定场合下的需要,本表的温度可以在 0~60℃的范围内手动设定。一旦温度 设为手动后,显示屏上在温度值的前面将有一个'手'字,仪表也将不检测被测液的实际 温度。具体设置方法见'参数'菜单。

4.10 如何调节显示对比度

DWG-5088A 阳床钠度仪能自动地跟踪环境温度的变化,自动调整显示的对比度。

为满足使用者的个人喜好,在面板上特设立了对比度调节按钮,左边的是减小对比度, 右边的 是增加对比度(参见'显示屏与功能键'一节)。可以按住不放,以快速变化对比 度。

第五章 仪表启动

DWG-5088A 阳床钠度仪的功能很多,由于采用了分门别类的菜单结构,面板上的功能 键基本上没有多意性,操作很简单,可按照屏幕上的提示进行。如果下面的显示例子中有 的参数与你手中的仪表不一样,这没关系,是因为你设置的参数不一样。

5.1 主菜单

接通电源,开机后经预热进入主菜单。首先对仪表进行"标定"。

①历史	曲线	⑤标	定
2诊	断	⑥空白	校验
③维	护	⑦厂家	联系
④参	数	2300A0-	-3.0

5.2 "标定"子菜单

由于每支钠测量电极的零电位不尽相同;电极对溶液钠浓度的转换系数(即斜率)又不能精确地作到理论值,有一定的误差;而且更主要的是零电位和斜率在使用过程中会不断的变化,产生老化现象;这就需要不时地通过测定标准溶液来求得电极的实际的 E0 和 S,进行"标定"。

本表有两点标准添加、离线标定、手动输入 E0、S 三种标定方法,供用户选择。

两点标准添加:选两种标液进行标定。

在电极第一次使用,必须两点标定,以后每隔一段时间标定一次,确保仪表的测量精 度。

离线标定:在线表与实实验室表相对应。

手动输入 E_o、S:在已知电极零点和斜率的情况下可直接输入电极的 E_o、S。 按屏幕提示操作,很方便的进行标定。标定结束后可进入"参数"子菜单观察 E_o和 S。 先密码核对无误后,将显示标定菜单:

(1).两点标准添加(2).离线标定(3).手动输入 E₀、S

用▲▼移动光标,选择标定方式,按确认开始,按退出退到主菜单。

5.2.1 两点标准添加

两点标定的步骤如下:

冲洗完成后,按▲▼键修改体积值, 仪流动池体积的大小见流动池上的标签。

标定前最好用低钠水冲洗流通池两次,防止样水中 残留钠离子的影响。

将流动池上的切待液位产生虹弧	刀换阀推入, 及时,关闭流
量阀	
等待	完成
25.0℃	-122mV
待mV数稳定	
不稳定	稳定

产生虹吸现象大概要5分钟。

观察 mV 数变化,通常情况下两、三分钟后 mV 数趋 于稳定。继续观察两分钟,若 mV 数稳定,移动光标, 确认稳定。进入下一步操作。

吸取标准1加到电极流	
动池中	
确定	
	-

25.0°C	-227mV	
待mV数稳定		
不稳定	稳定	

吸取标准溶液 1,500uL 加入到流动池里,选择标准 1,按"确认"键进行下一步操作。

观察 mV 数变化,如果 mV 数超过 5 分钟 不稳定应 重新清洗电极。

吸取标准液2加到电极流 动池中 确定
25.0℃ –122mV 待 mV 数稳定 <mark>不稳定</mark> 稳定
pNa 6 02年04月01日标定 E ₀ = -22
S=0.97 合格 失败
输出电流锁定在 4.03mA 请输入被测液 ug/L 值: 20ug/I

25.0℃ -122mV 已知 ug/L 值为: 20ug/L 待 mV 数和温度稳定 不稳定 稳定 02 年 04 月 01 日标定 E₀= -22 S=0. 97 合格 失败 吸取标准溶液 1,500uL 加入到流动池里,选择标准 1,按"确认"键进行下一步操作。

按提示进行下一步操作。

此时,用户要作出判断,看标定结果是否合乎要 求,具体值就要用户自己根据现场对测量精度的具体 要求等多种因素确定。如选"失败",将退到"标定" 子菜单。如选择"合格",标定的结果自动存储,在"E0.S 查询"和"参数"菜单中可查询到。

5.2.2 离线标定

输入实验室表测量值后按确认键

离线标定功能就是一个简单的单点标定,用实验室 方法为仪表赋一个值。离线标定实际上是指从仪表水 路的旁路阀中取样水用实验室表测量

5.2.3 手动输入 E_o、S

进入菜单后,操作方法如下:

5.2.4 空白校验

在进行空白校验前先进行一次离线标定。

25.0℃	-122mV
ug/L 值为	20ug/L
待 ug/L 值	和温度稳定
不稳	定 稳定

输出电流锁定在 4.02mA 请输入被测液 ug/L 值: 20ug/L

按提示输入µg/L值,然后按"确定"。

5.3"历史曲线"子菜单

该子菜单包含仪表的数字式记录仪功能,在一屏幕上同时实现:历史曲线显示和特定 点、特定时间的钠浓度值查询。

"历史曲线"从总体上反映水质的变化趋势和过程,很利于发现问题和解决问题。"定时定点"将得到特定点、特定时间的具体被测参数。

此菜单不能被微机封锁。

二次表能存储从现在算起,最近一个月的数据,每5分钟存一点,一月前的数据将自

动被覆盖。

进入该菜单后,最近半天的数据以曲线显示如下图:

按下确认键,将进入上下限修改和以前时间曲线的显示或数据查询。请注意:图形上 有一小十字光标,按动◀▶键,就在每条线的顶部移动,用于选择特定点。图形上排显示 光标所对应的具体时间和具体的钠浓度,,这在曲线出现异常点,需要定位时十分有用。

此时可有的操作如下:

1. 某一时间的钠浓度查询

向后查:按下▶键,光标向右移动,图形上排的时间变近。光标移到最右边后再按▶ 键则会自动翻到下一半天的曲线。

向前查::按下◀键,光标向左移动,图形上排的时间变远。光标移到最左边后再按◀ 键则会自动翻到上一半天的曲线。

2. 以前某段时间的钠浓度曲线或某点某时钠浓度的快速查询

按下确认键,出现如下显示:

E]期无效!
继续	退出

用方向键选择需改变的项,按下确认键开始作相 应的修改。能修改的项目分别是:显示的上刻度、下 刻度及提前的天数。下行自动显示查询的时间。

按退出键稍候,将得到所选日期前半天的曲线。 若所给时间超出有效范围,则出现如下提示:

这时选择"继续"可回到日期输入,"退出" 则除了修改的显示上、下限有效外,显示的年月日 不变。随后就可用方向键定点查询。

改善曲线显示的效果

不同的测量点有不同的测量值, "历史曲线"的"显示上限"和"显示下限"要与之 相对应。如果"显示上限"定得比平常值小, 一条条直线将把显示屏顶满, 看不到测量值 的变化。如果"显示下限"定得比平常值大, 屏幕上将是一片空白, 看不到曲线。必须根 据被测值的范围正确设置"显示上限"和"显示下限"。设置方法见第四章, 修改完毕后按 退出键, 将以修改后的显示上、下限为范围显示历史曲线。

5.4"诊断"子菜单

在诊断子菜单中可对仪表和电极的使用情况进行监督和查询。

1、 <mark>记事本</mark>	
2、E ₀ .S查询	

5.4.1 记事本

二次表能记录 200 条最近发生的事件及时间获得符合 DIN ISO9000 标准的质量控制文件。具体事件如下:

上电运行、关电停运、温度超限开始、温度超限结束、高报警开始、高报警结束、开 机维护开始、开机维护结束、手动电流源开始、手动电流源结束、修改系统密码、更改输 出上限、更改输出下限、更改报警上限、更改电流输出方式、更改系统时间、更改水质选 择、更改报警下限、一点标液标定开始、一点标液标定结束、二点标液标定开始、二点标 液标定结束、已知钠浓度标定开始、已知钠浓度标定结束、手动输入 E₀. S、复位或瞬间掉 电、低报警开始、低报警结束、更改温度测量方式和更改手动温度值。显示例如下:

用▲键滚动观察前面的事件,用▼键滚动观察后面的事件。

5.4.2 "E₀.S 查询"

E₀为电极的零电位,S为电极的斜率。

E₀.S 值查询功能将忠实地记录电极的变化过程和老化程度,以判断电极的性能和寿命。 二次表存储最近 50 次的标定结果,进入后,一屏只显示最近的 7 次标定结果。

注: "1" 表示是两点标准添加的标定结果; "2" 表示是手动输入的 E_o、S。

进入该菜单后,屏幕上即显示最近七次的标定结果,用▲键可向前移动,查找以前的 标定结果;移动后可用▼键向后移。对这些数据用户只能看,不能修改。

进入"维护"["]菜单后,屏幕显示如左。"系统维护"为厂家保留功能,用户进不去。 用▲▼键选择,按确认键进入,按退出键回到主菜单。

5.5 "维护"子菜单

进入"维护"子菜单后,屏幕显示如左。"系统维护"为厂家保留功能,用户进不去。 用▲▼键选择,按确认键进入,按退出键回到主菜单。

1. 开机维护	
2. 手动电流源	
3. 密码修改	
4.系统维护	

5.5.1 开机维护

仪表在运行过程中,对电极或测量池进行维护时,或断了水样,或取出了电极,这时, 仪表采集到的数据是假的,输出的电流,存储的数据也是假的。为避免这种情况的产生, 特设立了"开机维护"功能。将输出电流冻结。在连网使用时,微机将探测到仪表正处于 在线维护态,停止记录数据,并自动跟踪维护的时间长短。进入此菜单后,屏幕显示如下: 将电流冻结在当前值,并送出状态信号给微机。

维护结束后,选择"解冻"或按"退出"。

5.5.2 手动电流源

在该菜单中,输出电流可由用户通过键盘任意设定。设立此项功能的目的有两个:一 是让用户在全输出范围内检查仪表输出电流的准确性;二是与记录仪或传统的下位机相连 时,可以检查记录仪和下位机采样是否正确,以便分清责任,甚至手动控制后接的调节器。 在确认密码准确无误后,进入菜单显示如下图:

特别提醒:在使用此项功能时,因输出电流由用 户任意设定,可能在全范围内变化,要确认接在输出 上的调节控制器或微机不会产生带有不良后果的控制 输出。 DWG-5088A 中文在线阳床钠度仪

电流与钠浓度对应关系请参见下一节。这样,校验方式至少有三种:

一、在输出端接电阻负载和万用表等,检查输出电流的正确性;

二、接上记录仪,对照检查;

三、将输出接入微机采样系统,对照检查。

按下退出键, 就退出子菜单, 返回到主菜单。

输出电流的计算

电流输出范围由"参数设置"菜单设定,不用打开仪表或拨动开关。

仪器提供0~10mA或4~20mA的电流输出信号,但是与之对应的钠浓度区间可由用户自

行设定. 测量的钠浓度与输出的电流的对应关系如下:

对 0~10mA 输出方式: I=
$$D - D L$$

 $D H - D L$ ×10m A其中: I-输出的电流值D-当前测得的钠浓度DH-用户设定的 10mA 电流对应的钠浓度, 即输出高限DL-用户设定的 0mA 电流对应的钠浓度, 即输出低限对 4~20mA 输出方式: I=4mA+ $D - D L$
 $D H - D L$ ×16m A其中: I-输出的电流值D-当前测得的钠浓度DH-用户设定的 20mA 电流对应的钠浓度, 即输出高限DL-用户设定的 4mA 电流对应的钠浓度, 即输出低限

5.5.3 密码修改

参见"密码的核对与修改"一节。

5.5.4 系统维护

系统维护为厂家保留的功能,一般情况下用户进入不了。

5.6"参数"子菜单

此菜单完成参数的显示与修改。"参数显示"菜单只能观察参数,不能修改;为防止 在现场无关人员的误操作,参数修改设立了密码。

在测量前,应根据现场情况对参数进行设定。若不设定,对新用户按出厂时的设定值 运行,老用户则按以前的设定值运行。

用▲▼键选择,按确认进入,按退出,退到主菜单。

5.6.1 参数显示

进入该菜单后,屏幕上即显示各种参数的当前值,有两屏。表号在连网时使用。

5.6.2 参数修改

进入"参数修改"菜单后,首先要核对密码,无误后方可进入。有两屏,详见下面的 说明。

时间修正

二次表在存储数据时,是带时间存储的。如果时间不对,记录将是错误的,以后的"历 史曲线"功能将得不到正确的数据。

用方向键选择,按下确认进入,用▲▼键修改完后按下确认键或退出键即退出该项修 改。

年 :	02	月 :	04]:	05	
时 :	12	分:	20	秒:	30	
星邦	朝 :					

5.7 空白校验

因多种原因,造成在线表和实验室表的测量值之间存在差异,其中最主要的原因是测量的环境不同:若要消除两者间的差异,或者说要使在线表与实验室表相吻合,特设立了此功能。当测量方式选为"动态"时,显示值为实测值+流量补偿值。流量补偿值=在线测量值一静止敞放测量值。

先按"退出"后,进入主菜单。选择"空白校验",按"确定"键进。

输入密码后,进入如左图的菜单。按▲▼增加、 减少µg/L值。

修改完成后按"确定"退出。

5.8 "厂家联系"子菜单

给出新三可公司的联系地址和电话:

第六章 测试与模拟调试

下面我们将详细地讲解本表的模拟调试方法和注意事项。为了用户更好地熟悉和维护,也为了在测量时出现问题后,要判断是电极还是仪表出了问题时给与帮助。

二次表的模拟调试

DWG-5088A 中文在线阳床钠度仪因阻抗变换器将温补电阻信号转换成 mV 信号了, 故对 二次表模拟调试可全用电位差计, 接线图如下:

2300二次表的模拟调试接线图

mV 数与钠浓度的对应关系、电阻与温度的对应关系请参见下两页对应表的高阻输入

栏。前置级将 μ g/L和温度都变成了 mV 信号输入二次表。

第七章 维护、维修

以下章节是叙述故障检查的,它不需要特别的工具及技术就能进行。注意在大部份时间设置中,温度读数应在 5~40℃之间,毫伏读数在-400~0之间。斜率在 0.8-1.1之间, E₀在-50~80mV 之间。

故障	可能出现的原因	处理办法	
	1、标定方法不对;	1、重新标定;	
	2、钠电极故障;	2、更换钠电极并重新标定;	
何刘云	3、标准溶液污染;	3、用新的标准溶液重新标定;	
低斜率	4、电气故障;	4、参看使用维护手册;	
	5、移液管使用不当;	5、参看移液管使用说明书;	
	6、背景浓度太高。	6、用高浓度的标准溶液标定。	
剑索土何 0 ~ 0 1	1、标准溶液1和2混淆使用;	1、重新标定;	
科率太低 5<0.1	2、电气故障。	2、重新复位计算机,或联系本公司	
斜率低于零	参比电极与钠电极接反	重新连接两个电极的连线	
	1、标定方法不对;	1、新标定;	
高斜率 S>1.2	2、钠电极故障;	2、更换钠电极并重新标定;	
	3、标准溶液污染;	3、用新的标准溶液重新标定;	
	4、电气故障;	4、参看使用维护手册;	
	5、移液管使用不当;	5、参看移液管使用说明书;	
	6、背景浓度太高;	6、用高浓度的标准溶液标定;	
	7、钠电极响应缓慢。	7、清洗钠电极并重新标定。	
	1、样水波动;	1、将流动池充满到标定液位并关闭	
干扰		流量,如果电极稳定,则表示仪	
		表是正常的;	
	2、参比电极填充液流动不畅;	2、检查电解液是否流动,检查瓶底	
		上的排气孔;	
	3、电极故障;	3、更换电极;	
	4、地线松弛;	4、检查流动池上的地线连接;	
	5、 仪表正常, 记录仪故障;	5、检修记录仪;	
	6、信号输出模件;	6、将屏幕显示与模件输出比较,如	
		果屏幕显示稳定,而记录仪有干	
		扰,请参照用户手册;	

	7、温度探头;	7、检查温度稳定性,如有干扰,更
		换探头;
	 8、空气泵故障;	8、调节空气泵,使空气泡能稳定地
		出,如有必要可更换:
	 9、电气故障;	9、重新复位计算机,或联系本公司;
	 10、连续使用同一标定结果。	10、拔下空气泵的进口管,打开流动
		 池的盖子,用去离子水清洗流动池和
		盖子,然后重新连接空气泵。
	1、样水浓度变化;	1、进行量程检查,如果检查通过,
		说明仪表测量正常;
	2、地线松弛;	2、检查连接在流动池上的地线,如
		有必要可拧紧:
	3、参比电极填充液流通不畅;	3、查看电解液瓶底是否已开孔,检
		查参比电极的连接管有无阻塞;
漂移过大	4、参比电极;	4、更换参比电极;
	5、钠电极;	5、更换钠电极;
	6、温度探头;	6、检查温度稳定性,如有干扰,更
		换探头;
	7、扩散管破裂;	7、检查试剂扩散瓶的液位,如果液
		位升高,更换试剂和扩散管,管
		接头可能也需要更换
	8、电器故障。	8、重新复位表算机,或联系本公司。
	1、样水压力低于 056Kg/cm ² ;	1、检查样水压力,如低于该值,应
		提高样水压力;
流量过低	2、压力调节阀设定太低;	2、拉出黑色锁环,顺时针方向旋转
		黑色旋钮,提高样水压力;
	3、分流过滤器阻塞;	3、清洗或更换过滤器;
	4、节流管弯皱或断裂。	4、更换节流管。
	1、导气管弯皱或断裂;	1、检查导气管,需要时可更换;
 	2、空气泵故障。	2、必要时可更换。
	1、标准溶液、移液管或移液管嘴	1、使用新的标准溶液,更换移液管
不能进行良好的	被污染;	嘴,参照移液管说明书,掌握正
标定		确移液技术;
	2、试剂已消耗;	2、更换试剂;

=

	3、移液管故障;	3、参照移液管说明书;
	4、流动池污染;	4、用除盐水冲洗流动池,保持标定
		液位高度,用样水流动冲洗一夜;
	5、电极故障;	5、更换一支或两支电极;
	6、电气故障;	6、请参照维修手册的更换说明或向
		本公司咨询;
	7、浓度持续增大。	7、流动池污染,用去离子水清洗流
		动池,保持标定液位用样水冲洗
		流动池一昼夜,然后开始标定。
更换试剂时泄露	鸭嘴阀损坏	更换鸭嘴阀

注意:

用户在阳床再生时,一定要将其进水阀门关闭,以免阳水进入,污染电极。

第八章 技术指标

- 1、 测量范围:Na+:0.01~2300µg/L 温度:0~60℃
- 2、 基本误差:±2.5%, 温度±0.3℃
- 3、 自动温度补偿范围:0~60℃,25℃为基准
- 4、 电子单元温度补偿误差:±2.5%
- 5、 电子单元重复性误差: 读数的±2.5%
- 6、 稳定性:读数的±2.5%/24h
- 7、 输入阻抗:>10¹²Ω
- 8、 输入电流:≤2×10⁻¹²A
- 9、 被测水样:0~60℃, 0.3MPa
- 10、时钟精度:±1分/月
- 11、隔离输出:0~10mA(负载<1.5kΩ),4~20mA(负载<750Ω)
- 12、输出电流误差:≤0.05mA
- 13、数据存储数量:1个月(1点/5分钟)
- 14、数据连续掉电保存时间:5年
- 15、高低报警两付常开触点:3A, 240V AC, 6A, 28V DC 或 120V AC
- 16、网络输出:平衡差动式传输;不加中继器:距离>1.2km 加中继器,距离>10.0km
- 17、电源:220V±10% 50±1Hz
- 18、开孔尺寸:表计:138*138 测量单元: 375(宽)×635(高)
- 19、工作条件:环境温度:0~60℃ 相对湿度:<85%

第九章 订货与联系

订货:

订货时请说明水样情况,我们为您选配合适的碱化系统。

联系:

通讯地址:上海浦东新区秀沿路 118 号

邮编: 201315

用户热线:

电话: 021-200422

- 传真: 021-20981909
- http: //www.shboqu.com

E-mail: shboqu@aliyun.com