

TT-AFM

This compact, tabletop Atomic Force

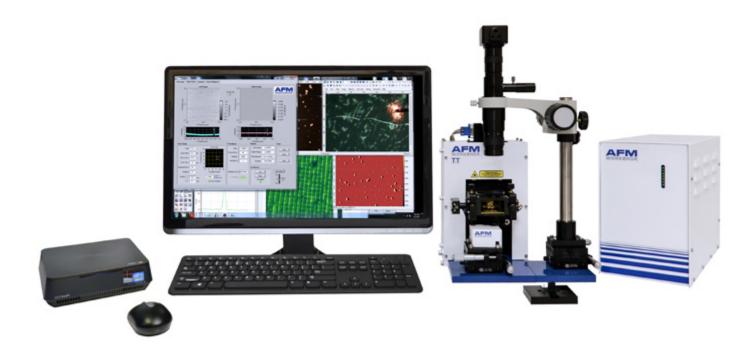
Microscope has all the important
features and benefits expected from a

light lever AFM.

The TT-AFM includes everything you need for AFM scanning: a stage, control electronics, probes, manuals, and a video microscope.

For:

Nanotechnology Researchers


Wanting to do routine scanning of nano-structures.

▶ Instrument Innovators

Using AFM as a platform to create a new instrument.

Educators

Teaching students about AFM construction, operation, and applications.

Sample Sizes

up to 1" X 1" X 1/4"

Standard Scanning Modes

Vibrating, Non Vibrating, Phase, LFM

Scanners

 $50 \times 50 \times 17 \mu m$; $15 \times 15 \times 7 \mu m$

Video Optical Microscope

Zoom to 400X, 2 µm resolution

Stage and Ebox Size

Compact Tabletop Design

STAGE

The TT-AFM stage has excellent thermal and mechanical stability required for high resolution AFM scanning. Additionally, its open design facilitates user modification.

Rigid Frame Design

The crossed beam design for the stage support is extremely rigid so the AFM is less susceptible to external vibrations.

Light Lever AFM Force Sensor

Light lever force sensors are used in almost all atomic force microscopes and permit many types of experiments.

► Integrated Probe Holder/Probe Exchanger

A unique probe holder and clipping mechanism allows quick and easy probe exchange.

Direct Drive Z stage

A linear motion stage is used to move the probe in a perpendicular motion to the sample. Probe/sample angle alignment is not required, facilitating a much faster probe approach.

Small Footprint

The stage dimensions of 7.5 X 12" require little space and fit easily on a tabletop.

Precision XY Stage with Micrometer

The sample is moved relative to the probe with a precision XY micrometer stage. Thus, the sample can be moved without touching it.

Modes Electric Plug

A six pole electrical plug is located at the back of the stage to expand the capabilities of the TT-AFM.

XYZ Precision Piezo Scanner

The modified tripod design utilizes temperature compensated strain gauges which assure accurate measurements from images. Also, with this design it is possible to rapidly zoom into a feature visualized in an image.

Laser/Detector Alignment

Both the light lever laser and the photo detector adjustment mechanism may be directly viewed. This feature simplifies the laser/ detector alignment.

Adaptable Sample Holder

At the top of the XYZ scanner is a removable cap that holds the sample. The cap can be modified - or a new cap can be designed - to hold many types of samples.

- High resolution video microscope
- Direct drive Z motor stage
- Light lever force sensor
- Mode input/output plug
- XYZ linearized piezo scanner
- XY sample translation stage

FBOX

Electronics in the TT-AFM are constructed around industrystandard USB data acquisition electronics. The critical functions. such as XY scanning, are optimized with a 24-bit digital to analog converter. With the analog Z feedback loop, the highest fidelity scanning is possible. Vibrating mode scanning is possible with both phase and amplitude feedback using the high sensitivity phase detection electronics.

24-bit scan DAC

Scanning waveforms for generating precision motion in the XY axis with the piezo scanners are created with 24-bit DACS driven by a 32-bit micro controller. With 24-bit scanning, the highest resolution AFM images may be measured. Feedback control using the XY strain gauges assures accurate tracking of the probe over the surface.

Phase and Amplitude Detector Circuit

Phase and amplitude in the Ebox are measured with highly stable phase and amplitude chips. The system can be configured to feed back on either phase or amplitude when scanning in vibrating mode.

Signal Accessible

At the rear of the Ebox is a 50 pin ribbon cable that gives access to all of the primary electronic signals without having to open the Ebox.

Status Lights

At the front of the Ebox is a light panel that has 7 lights. In the unlikely event of a circuit failure, these lights are used for determining the status of the Ebox power supplies.

Precision Analog Feedback

Feedback from the light lever force sensor to the Z piezoceramic is made using a precision analog feedback circuit. The position of the probe may be fixed in the vertical direction with a sample-and-hold circuit.

Variable Gain High Voltage Piezo Drivers

An improved signal to noise ratio, as well as extremely small scan ranges are possible with the variable gain high voltage piezo drivers.

Microprocessor for scan generation through 24-bit DAC's

Low noise, variable gain high voltage amplifiers with PID feedback for XY scanning

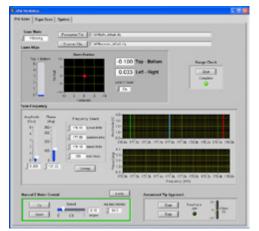
Dimensions: Width 6" | Height 10" | Depth 14"

High fidelity, low noise Z feedback circuits for accurate probe tracking

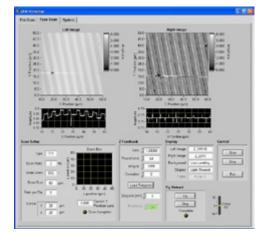
Phase and amplitude detection circuits for vibrating mode AFM

Industry-standard National Instruments USB data acquisition board

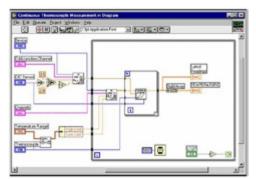
Internally accessible header for signal input/output


Eight channels of ADC for monitoring and displaying data with LabVIEW™ software

SOFTWARE

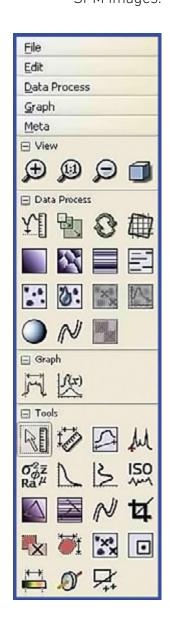

Software for acquiring images is designed with the industry-standard LabVIEW™ programming visual interface instrument design environment. There are many standard functions, including setting scanning parameters, probe approach, frequency tuning, and displaying images in real time. LabVIEW™ facilitates rapid development for those users seeking to enhance the software with additional special features. LabVIEW™ also enables the TT-AFM to be readily combined with any other instrument using LabVIEW™ VI.

Pre-scan Window


A pre-scan window includes all of the functions required before a scan is started. The functions are presented in a logical sequence on the screen.

Scan Window

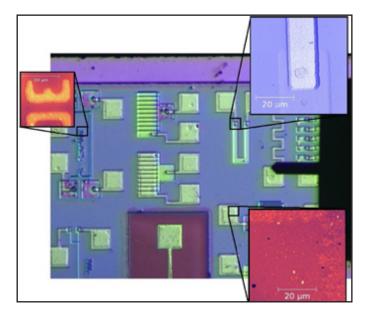
Once all the steps in the pre-scan window are completed, the scan window is used for measuring images. Scan parameter, Z feedback parameters, and image view functions may be changed with dialogs on this screen.


LabVIEW™ Window

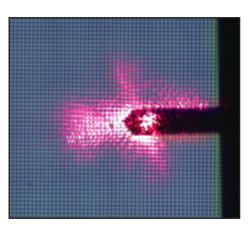
Industry-standard programming environment. Readily customized and modified for specialized applications. Instrumentation already using LabVIEW™ can be added to the TT-AFM to create new capabilities.

IMAGE ANALYSIS SOFTWARE

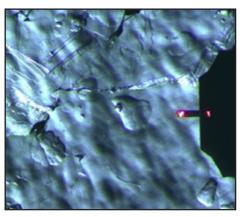
Included with the TT-AFM is the Gwyddion open source SPM image analysis software. This complete image analysis package has all the software functions necessary to process, analyze and display SPM images.



- » Visualization: false color representation with different types of mapping
- Shaded, logarithmic, gradient- and edge-detected, local contrast representation, Canny lines
- » OpenGL 3D data display: false color or material representation
- » Easily editable color maps and OpenGL materials
- » Basic operations: rotation, flipping, inversion, data arithmetic, crop, resampling
- » Leveling: plane leveling, profiles leveling, three-point leveling, facet leveling, polynomial background removal, leveling along user-defined lines
- » Value reading, distance and angle measurement
- » Profiles: profile extraction, measuring distances in profile graph, profile
- » Filtering: mean, median, conservative denoise, Kuwahara, minimum, maximum, checker pattern removal
- » General convolution filter with user-defined kernel
- Statistical functions: Ra, RMS, projected and surface area, inclination, histograms, 1D and 2D correlation functions, PSDF, 1D and 2D angular distributions, Minkowski functionals, facet orientation analysis
- » Statistical quantities calculated from area under arbitrary mask
- » Row/column statistical quantities plots
- » ISO roughness parameter evaluation
- » Grains: threshold marking and un-marking, watershed marking
- » Grain statistics: overall and distributions of size, height, area, volume, boundary length, bounding dimensions
- » Integral transforms: 2D FFT, 2D continuous wavelet transform (CWT), 2D discrete wavelet transform (DWT), wavelet anisotropy detection
- » Fractal dimension analysis
- » Data correction: spot remove, outlier marking, scar marking, several line correction methods (median, modus)
- » Removal of data under arbitrary mask using Laplace or fractal interpolation
- » Automatic XY plane rotation correction
- » Arbitrary polynomial deformation on XY plane
- 1D and 2D FFT filtering
- » Fast scan axis drift correction
- » Mask editing: adding, removing or intersecting with rectangles and ellipses, inversion, extraction, expansion, shrinking
- » Simple graph function fitting, critical dimension determination
- » Force-distance curve fitting
- » Axes scale calibration
- » Merging and immersion of images
- » Tip modeling, blind estimation, dilation and erosion

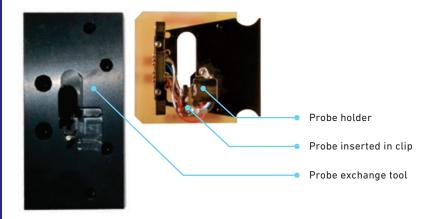


VIDEO MICROSCOPE


A video optical microscope in an AFM serves three functions: aligning the laser onto the cantilever in the light lever of the AFM, locating surface features for scanning, and facilitating probe approach. The TT-AFM includes a high performance video optical microscope along with a 3 megapixel camera, light source, microscope stand, and Windows software for displaying images.

Here the video optical microscope allows viewing features on a test structure. The AFM cantilever is on the right. Three images show results of areas selected for AFM scanning.

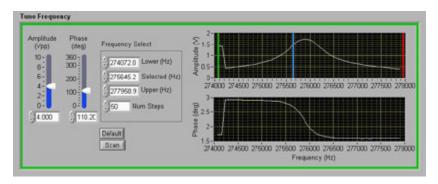
Laser alignment is greatly facilitated with the video optical microscope. This vibrating cantilever is $250 \mu m$ long. The red spot is from the laser reflecting off the cantilever.


The video optical microscope zooms in to show an HOPG sample surface and the AFM cantilever.

PROBE HOLDER **EXCHANGE**

The TT-AFM utilizes a unique probe holder/exchange mechanism. Probes are held in place with a spring device that mates with a probe exchange tool.

This combination makes changing probes fast and easy on the TT-AFM.



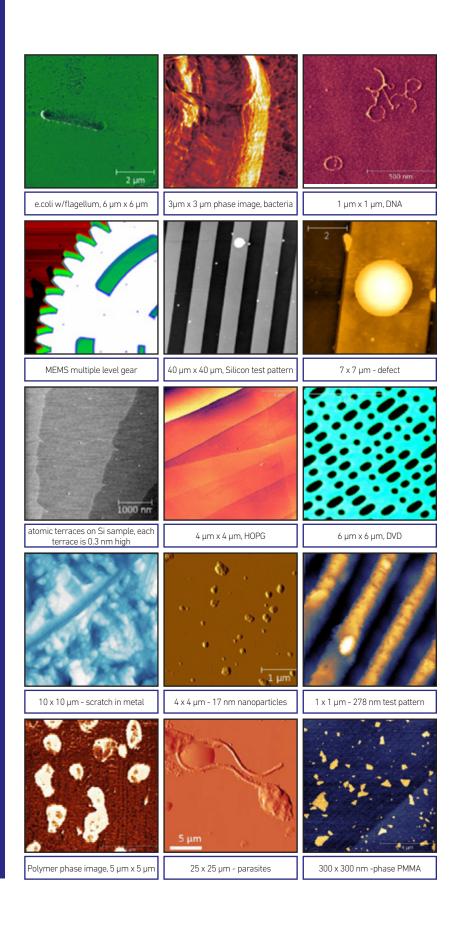
SCANNING MODES

Standard with every TT-AFM are nonvibrating (NV) mode and vibrating (V) modes for creating topography scans.

Additional modes included with the product are lateral force imaging and phase mode imaging.

Any scanning mode that can be implemented with a light lever AFM is possible with the TT-AFM.

With the window above the resonance frequency of a cantilever is readily measured. Additionally, the phase characteristics of the probe-sample interaction may be captured.



TT-AFM IMAGES

With a vertical noise floor of 0.1 nm and a horizontal resolution of 2 nm, most types of samples may be imaged with the TT-AFM. These include hard as well as soft samples.

OPEN DESIGN

An open design is at the core of all products offered by the AFM Workshop. New types of experiments are more readily designed and implemented through the use of LabVIEW™ software. All the mechanical drawings for the TT-AFM are available in the documentation package option. Finally, the company's website offers a Users Forum to directly share specialized designs developed for the TT-AFM. For specialized applications, other types of scanners such as flexure and tubes can be easily added to the microscope stage.

TT-AFM OPTIONS

Although the TT-AFM comes with everything you need to make AFM images, several additional options are available.

Vibration cabinet

Environmental cell

15 µm scanner

Dunk and Scan Probe Holder

Open liquid cell for scanning samples submerged In liquids. Can directly replace the TT-AFM probe holder or the NP/SA/or LS-AFM probe holder.

Environmental Cell

Permits scanning in inert environments or liquids.

► High Resolution Scanner

Allows a range of 15 x 15 microns in XY and 7 µm in Z.

Vibration Cabinet

Reduces unwanted acoustic and structural vibrations.

Conductive AFM

Measures the 2D conductivity of sample surfaces.

Magnetic Force Microscopy

Measures surface magnetic field by incorporating a magnetic probe into the AFM.

Lithography

Enables the probe to alter the physical or chemical properties of a sample surce.

AFMWorkshop regularly develops new Options.

contact AFMWorkshop for more information on options for the TT-AFM.

SPECIFICATIONS

▶ 50 Micron XYZ Scanner

Modified tripod » Type » XY Linearity < 1% » XY Range $> 50 \, \mu m$ » XY resolution < 3 nm closed loop < 1 nm open loop » XY Actuator type Piezo » Sensor type Strain Gauge » Z Range $> 17 \mu m$ » Z Linearity < 5 % » Z sensor noise < 1 nm < 0.15 nm* » Z feedback noise » Z Actuator Type Piezo » Z Sensor type Strain Gauge

15 Micron XYZ Scanner

» Type Modified tripod » XY Linearity < 1% » XY Range $> 15 \mu m$ » XY resolution < 1 nm closed loop < 0.3 nm open loop » XY Actuator type Piezo » Sensor type Strain Gauge » Z Range $> 7 \mu m$ » Z Linearity < 5 % » Z feedback noise < 0.08 nm* » Z Actuator Type Piezo » Z Sensor type None

Sample Holder

» Type Magnet » Max Lateral Dimensions » Max. Height 0.25"

Light Lever AFM Force Sensor

» Probe Types Industry-standard » Probe insertion Manual probe exchange tool » Probe holding mechanism Clip Vibrating mode piezo Electrical connector to probe » Laser/Detector adjustment range +/- 1.5 mm » Adjustment resolution 1 µm » Minimum Probe to Objective 25 mm » Laser Type 670 nm diode. < 1 mw » Detector

Type 4 quadrant Band Width > 500 kHz Signals Transmitted TL, BL, TR, BR Gain Lo, High Settings » Probe sample angle 10°

XY Translator

» Range 25.4 mm Resolution 2 um Type Bearing - spring loaded

Lock Down Yes

Z Motion

Direct Drive » Type 25 mm Range Drive Type Stepper Motor 330 nm Min. Step Size Slew Rate 8 mm/minute

» Limit Switch Top, Bottom

Software - rate, » Control step size

Digital Data Input Output

USB » Connection » Scanning DAC Number 2

Bits 24 Frequency 7 kHz

» Control DAC 2 Number Bits 14 Frequency 2 kHz

» ADC Number

Bits 14 48 kHz Frequency

8

Analog Electronics

» Vibrating Mode 2 kHz - 800 kHz Freq Range

Output Voltage 10 Vpp Demod. Freq TBD

» Z Feedback Type PID Bandwidth > 3 kHz Sample Hold Yes

» XY Scan

Voltage

Voltage 0 - 150 VBandwidth > 200 Hz Pan & Zoom 22 Bits » Tip Approach Cutoff $> 20 \mu m sec.$

0-150 V

SPECIFICATIONS CONTINUED...

Software

» Environment LabVIEW™ » Operating System Windows » Image Acquisition Real Time Display (2 of 8 channels) » Control Parameters PID Yes

Setpoint Yes Range Yes Scan Rate Yes Image Rotate 0 and 90° » Laser Align Yes » Vibrating Freq. Display Yes

» Force Distance Yes Tip Approach Yes Oscilloscope Yes » Image Store Format

Industry-standard » Image Pixels 16 x 16 to 1024 x 1024

» H.V. Gain Control XY and Z » Real time display Line Level. Light Shaded, Grey Color Pallet System Window » Calibration

» Probe Center Yes

Video Microscope

Computer

- » Industry-Standard Computer & Monitor (laptop available upon request)
- Windows
- AFMWorkshop LabVIEW.exe installed
- Z Noise performance depends greatly on the operating environment of the TT-AFM. Best Z noise performance is obtained in a vibration free environment. We recommend using a vibrating cabinet.
- ** Every effort is made to present accurate specifications, however, due to circumstances beyond the AFMWorkshop's control specifications are subject to change.

