HALL EFFECT MEASUREMENT SYSTEM

Hall and van der Pauw Measurements

The Hall Effect Measurement System

The Hall Effect

- Hall effect refers to potential difference (Hall voltage) on opposite sides of a thin sheet of conducting or semi-conducting material through which an electric current is flowing, created by a magnetic field applied perpendicular to the Hall element
- Presence of measurable transverse voltage is called the Hall effect after E. H. Hall who discovered it in 1879.

The Hall Effect

Ratio of voltage created to product of the amount of current and the magnetic field divided by the element thickness is known as the Hall coefficient

Characteristic of the material

Conduction phenomenon

- Different for different charge carriers
- Hall voltage has a different polarity for positive and negative charge carriers
 - Used to study the details of conduction in semiconductors and other materials which show a combination of negative and positive charge carriers.

The van der Pauw Method

> Characterizes a sample of semiconductor material

- can be successfully completed with a current source and a voltmeter.
- From the measurements made, the following properties of the material can be calculated:
 - The sheet resistance, from which the resistivity can be inferred for a sample of a given thickness.
 - > The doping type (i.e. if it is a P-type or N-type) material.
 - The sheet carrier density of the majority carrier (the number of majority carriers per unit area).
 - Density of the semiconductor (doping level) can be found for a sample with a given thickness.

> The mobility of the majority carrier.

- Measurements require four ohmic contacts on the sample:
 - >On or as close to sample boundary as possible
 - ➢Infinitely small
 - Error is given by D/L
 - > D = average diameter of contact
 - > L = distance between contacts
 - Leads from contacts should be of the same batch of wires to minimize thermoelectric effects
 - >All four contacts need to be same material

- \succ Current I_{AB} is a positive DC current measured in amperes (A) Injected into contact A Take out of contact B \succ Voltage V_{CD} is a DC voltage (V) measured between contacts C and C with no externally applied magnetic field
- Sheet Resistance, R_S , is measured in Ohms (Ω)

Ohm's Law:

 $R_{AB,CD} = V_{CD} / I_{AB}$

calculates the resistance along one edge

 e.g. Vertical edge: R_{AC,BD} and Horizontal edge: R_{AB,CD}

Actual sheet resistance is related to these resistances by the van der Pauw formula:

$$e^{(\frac{-\pi R_{AB,CD}}{R_s})}+e^{(\frac{-\pi R_{AC,BD}}{R_s})}=1$$

Obtain a more precise measurement of Rs by taking several reciprocal measurements and averaging

Hall Measurements

- When a charged particle (e.g. electron) is placed in a magnetic field, it experiences a Lorentz force proportional to the strength of the field and the velocity at which it is traveling through the field.
 - Force is strongest when the field is perpendicular to the direction of motion.
- Applying a current results in a steady flow of electrons through the material
 - Applying an external magnetic field will result in an accumulation of electrons at one edge of the sample

Creates a potential difference across the material

Hall Measurements

> Magnitude of the Hall voltage (V_H):

$$V_{H} = \frac{IB}{qn_{s}}$$

- \succ I = current (A)
- > B = strength of magentic field
- > q = Elementary Charge (1.602 x 10⁻¹⁹ coulombs)
- > n_s = sheet density of the majority carrier

Making the Hall Measurements

 \succ Two types of measurements need to be made: \triangleright One in a magnetic field in the positive field direction > One in a magnetic field in the negative field direction Constants: Direction of magnetic field Magnitude of injected current Overall Hall voltage can be calculated \triangleright Polarity of the V_H indicated the type of material \geq Positive = P-Type \triangleright Negative = N-Type

Components in a Hall System

- Pure high-pressure gas (greater than 1800 psi)
 Gas Lines, Pressure Gauge, etc
 Filter/Dryer Apparatus
 Refrigerator
 Computer (not included)
 Temperature controller
- Circuit Breakout Box
- Vacuum Pump (not included)

- Hall Vacuum Chamber
- Hall Electronics and Software
- Magnet (optional)
- Magnetic Power Supply (optional)

Gas, Lines, Gauges, etc

- >99.998% Prepurified Nitrogen at 2640 psi or higher
- High Pressure Nitrogen Regulator
- High Pressure Nitrogen Lines (supplied)
- Gas Flow Meter (supplied)

Filter/Dryer Systems

The Joule-Thomson Refrigerators

R2500-XX

Circuit Breakout Box

Vacuum Pump and Accessory Kit

Hall Vacuum Chamber

Spring-Loaded Probes

Hall Electronics

Magnets and Power Supplies

Possible Temperature Ranges

Kelvin Scale

≻ 70 K to 580 K

≥ 80 K to 580 K

≻ 70 K to 730 K

▶ 80 K to 730 K

≥ 300 K to 730 K

Centigrade Scale > - 200 °C to 305 °C > - 190 °C to 305 °C > - 200 °C to 455 °C > - 190 °C to 455 °C

≥ 25 °C to 455 °C

K = °C + 273

Why do we care about the Hall Effect?

- ≻ Hall effect devices:
 - >Immune to dust, dirt, mud, water
 - Better for position sensing
- Hall sensors:
 - Can easily detect stray magnetic fields
 - ➢Work well as electronic compasses
- Hall effect current transducers:
 - High accuracy, environmentally hardy, low power consumptopn
 - Ideal solution for solar energy management

R&W Technology(S.H)Company Limited TEL:+86-21-68413991 Mobile:13918893919 E-mail:xuefeng.xi@rnwtech.com

