Tech4Imaging Training

36-Channel Electrical Capacitance Volume Tomography Data Acquisition System and Image Reconstruction Software

Tomography

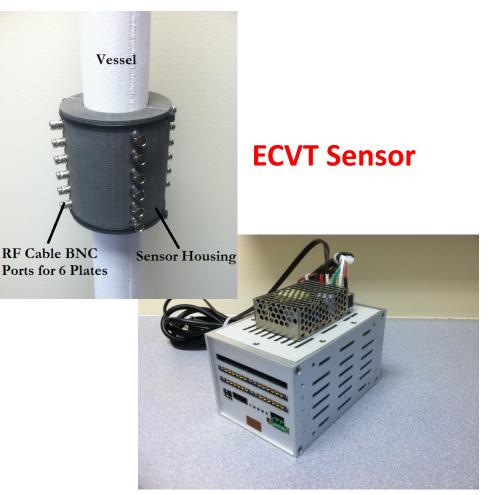
Sectioning of a volume by means of a penetrating wave. Produces image of a cross-section in volume.

- **Radiology** X-rays through volume (radiation concerns)
- Computer-Assisted Tomography (CAT) Computer-processed x-rays (radiation, expensive)
- Magnetic Resonance Imaging (MRI) Magnetically-disturbed atoms scanned (expensive, large)
- Positron Emission Tomography (PET) Gamma ray detection for 3-D imaging (ionizing radiation)
- Electrical Capacitance Tomography (ECT) Electric field disturbances analyzed for 2-D imaging
- <u>Electrical Capacitance Volume Tomography</u> (ECVT) ECT with 3-D imaging capabilities

Electrical Capacitance Volume Tomography (ECVT)

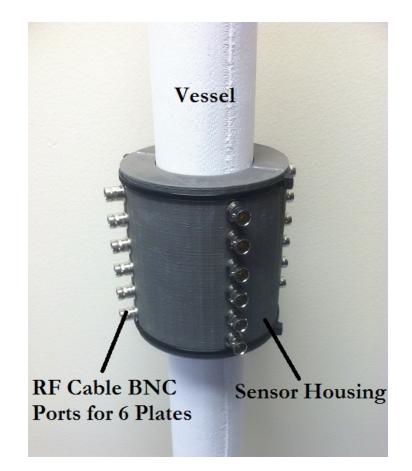
- Array of capacitor plates
- Real-time capacitance measurements reconstructed into image
- Multi-phase flow systems and volumes
- ECVT includes 3-dimensional image reconstruction

Benefits of ECVT


- Non-invasive, non-interfering tomography
- Affordable
- Designable for varying systems and vessel sizes
- Quick image reconstruction
- Runs on standard host PC
- Provides 3-D image of volume
- High space and time resolutions (milliseconds between images)

Tech4Imaging ECVT Data Acquisition System

- Unique capacitance sensor with up to 36 plates
- DAS-2 intermediary device between sensor and host PC
- USB connection to host PC
- All analysis and reconstruction occurs on PC

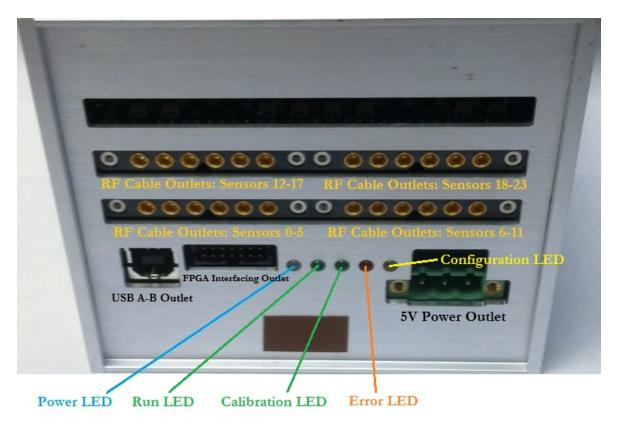


DAS-2 Device

ECVT Sensor

- Capacitance plates wrapped around vessel inside sensor housing
- Common sensors have 12, 24, or 36 plates
- Plates connect to DAS-2 with RF cables

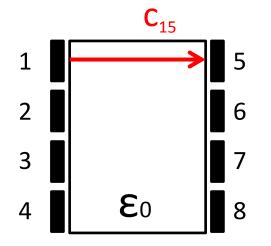
Data Acquisition System-2


- Drives AC signals to and receives measurements from capacitor plates
- Uses USB to communicate with host computer
- Dynamic Link Library usage
- 5-Volt power source
- Download software on CD to host PC

Data Acquisition System-2

- ECVT plate connections in groups of 6
- Three 12-plate receiver cards may be installed
- LEDs indicate power, run, and calibration status of DAS-2

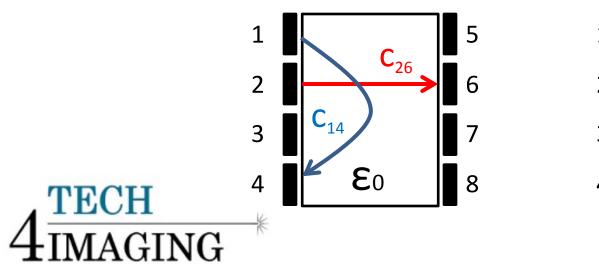
Data Acquisition System-2

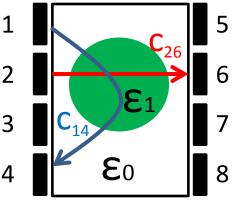

- Capacitance Reading Range: 1.1 fF (10⁻¹⁵ F) to 11 pF (10⁻¹² F), 1 fF resolution
- Relative Permittivity Range: 0.01 to 100 (Dynamic ratio of 1 to 10,000)
- Typical Measurement Time: 18.1 μs (10⁻⁶ s)
- For 24-plate setup, typical operating speed is 200 frames/second
- Receiver cards work in parallel to increase speed

Capacitance Measurements

DAS-2 Measurement Process (for c₁₅):

- 1. Send 2 MHz AC signal to driver plate (Plate 1)
- 2. Receive AC signal from excite plate (Plate 5)
- 3. Modulate and process excite plate signal to determine capacitance




Capacitance Measurements

• For an n-plate sensor, the number of unique plate pairs (channels) M is given by:

$$M = \frac{n \times (n-1)}{2}$$

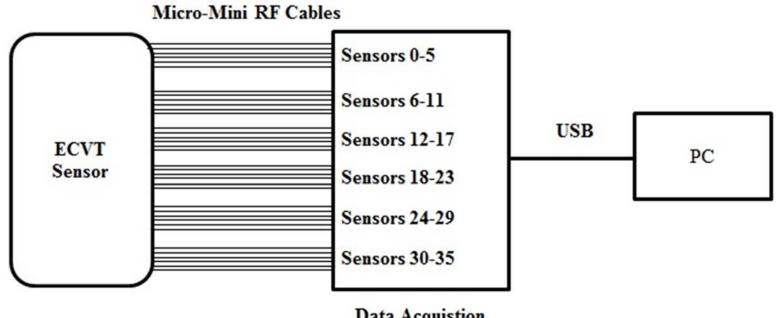
- Vertically-distant plates (farther than 5 cm) have low signal-to-noise ratios
- c₁₄ will not differentiate the presence of new objects inside sensor volume
- Such channels are not used in image reconstruction (channel vector rejects these plate pairs)

24-Plate ECVT Sensor Halves

Sensor Half around Vessel

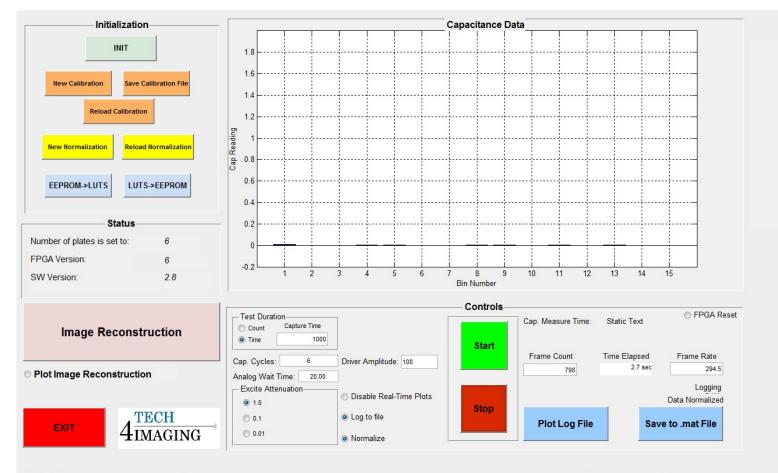
Full Sensor around Vessel

Metal Cable Tie around Sensor



Fastened Cable Tie

Fully-Attached Sensor



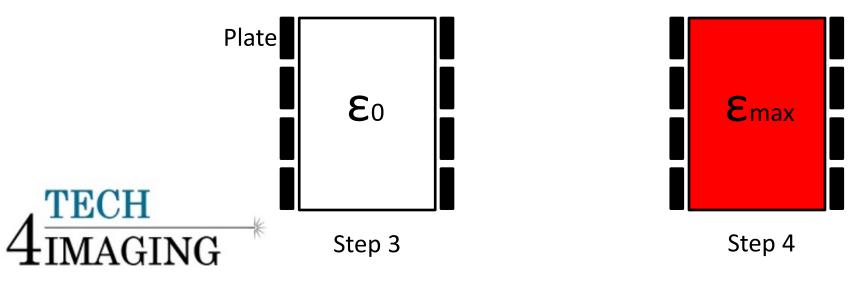
Data Acquistion System 2

Data Acquisition Software

Calibration

- System must be calibrated for the types of materials to be seen in a measurement
- Three options for calibration:
 - 1. Perform new calibration
 - 2. Reload a saved calibration
 - 3. Load calibration values from device EEPROM

Calibration



New Calibration

- 1. Select "New Calibration"
- 2. Input number of capacitor plates
- 3. Fill vessel with air or vacuum to calibrate minimum capacitance
- 4. Fill vessel with highest-dielectric material to calibrate maximum capacitance
- 5. Save calibration file if desired

*May take up to 30 minutes

**The orange "Error" LED on the DAS-2 front panel will be lit if calibration cannot be performed. Usually this is can be corrected by setting the Driver Amplitude to a lower value.

Normalization

- Host computer must be normalized to the range of expected capacitance readings
- Three options for normalization:
 - 1. Perform new normalization
 - 2. Reload a saved normalization
 - 3. Load normalization values from device EEPROM

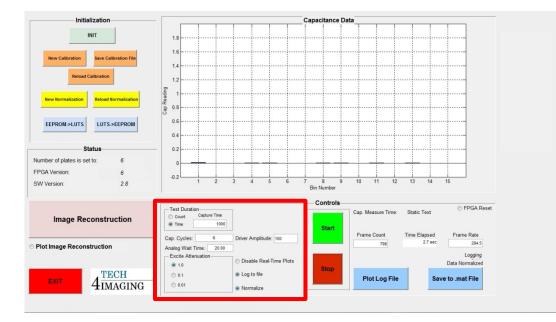
Normalization

Normalization

- Calibration determines minimum and maximum capacitances for each plate pair
- Normalization converts each plate pair reading to a percentage of its range: measured value – empty valuencin

 $c_{pair} = \frac{measured \ value - \ empty \ value_{pair}}{full \ value_{pair} - empty \ value_{pair}}$

• Allows comparison of different plate pair readings



Data Acquisition

Set test parameters for data acquisition:

- Test Duration (Num. of Frames or Time in Secs.)
- Capacitance Measurement Duration (Num. of Cycles)
- Driver Signal Amplitude (%)
- Wait Period between Measurements (µsecs.)
- Excite Signal Attenuation

Data Acquisition

Begin test and observe collected data:

- Display capacitance readings for each plate in real time
- Can also display rough reconstructed images in real time (slows down acquisition)
- Displays frames captured, run time, frame rate
- Shows logging status and location

Data Acquisition

- **Plot Log File** shows evolution of capacitances over test
- Save to .mat File- saves all data frames for later reconstruction
- Image Reconstruction- opens new interface

Image Reconstruction Software

		4	IMAG					
	Load Data							
	Sensitivity Matrix C:\Users\Rami.tech	4imaging\Desktop\Chris_Z\Task2\T	ask2\\FB_24plates_4P_I	NoEdge_20_Full.nsm.mat	Reconstruction Mo	ode Plot Data 👻		
	Data Vectors C:\Users\Rami.tech	4imaging\Desktop\Chris_Z\Task2\Ta	ask2\\C_ba Brow	se C:\Users\Rami.tech4im	naging\Desktop\Chris_Z\Task2\Task2	2\\chxFB4 Browse		
	Reconstruction Method LBP	✓ Alpha 0.50			Iterations 50			
	Color Bar Min 0.34	► Color	Bar Max 1	•	Isosurface Value 0.2933	F		
	Sensitivity Matrix			Capacitance Matrix				
	Total Channels 276	Pixels/Channels	8000	Frames 101	Capacitance Sensor	276		
					Plotting Paran	neters		
	X-Z plan	е		Y-Z plane	Frame Rang	e (min) 40		
					Frame Range	e (max) 50		
					Reconstructio	on Step 1		
					Go to Frame #:	40		
					Р	Process		
	0.4 0.6 X-Y plane	0.8 1 es		0.6 0.8 ometric View	1	>>		
					Current Frame	45		
					Gene	Generate Video		
					-	Reset		
ECH						Exit		
LUII	K							
MAGI	NG							

Sensitivity Matrix

- Determines relationship between sensor plates and changes in capacitance
- Studied volume divided into many small volumes (voxels)
- Matrix shows each plate pair response to capacitance change in each voxel
- Used in reconstruction algorithms to relate data to image

Loading Data

- 1. Select "Plot Data" as current mode
- 2. Select sensitivity matrix
- 3. Select previously-saved capacitance data vector
- 4. Select channel vector

Load Data	2	$4^{\frac{\text{TEC}}{\text{IMA}}}$	H GING			1
Sensitivity Matrix C:\Users\Ra	mi.tech4imaging\Desktop\Chris_Z\Ta	sk2\Task2\\FB_24plates_4	4P_NoEdge_20_Full.nsm.n	Browse	Reconstruction Mode	Plot Data 💌
	mi.tech4imaging\Desktop\Chris_Z\Ta	sk2\Task2\\C_ba Bro	C:\Users\Ran	ni.tech4imaging\Deski	top\Chris_Z\Task2\Task2\\cl	hxFB4 Browse
Reconstruction Method LBP	Alpha 0.5	0 4		▶ Iter	rations 50	4
Color Bar Min 0.34		Color Bar Max 1	4	Isosurfa	ce Value 0.2933 4	•
Sensitivity Matrix			Capacitance Matr	ix		
Total Channels 2	76 Pixels/Channels	8000	Frames	101 Ca	pacitance Sensor	276

Reconstruction Methods

Three methods are available for image reconstruction:

- 1. Linear Back Projection (LBP) Fastest, least accurate
- 2. Landweber Iteration Slower, more accurate
- 3. 3-D Neural Network Multicriterion Optimization Image Reconstruction Technique (NNMOIRT) – Slowest, most accurate

Method Parameters:

- Alpha
 - Landweber Method
 - Sets step size
 - Between 0 and 1
- Iterations
 - Landweber and NNMOIRT Methods
 - Determines iteration count for algorithm
 - Positive integer

-				_4P_NoEdge_20_Full.r			
Data Vectors C:Wser	s\Rami.tech4imagin;		2\Task2\\C_ba	C:\Users		esktop\Chris_Z\Task2\Task2\\chx	FB4 Brow
Color Bar Min 0.34	•	Alpha 0.50	olor Bar Max 1			Iterations 50	
color Bar Min 0.34	<u> </u>	<u> </u>	Nor Bar Max	Capacitance		fface Value 0.2933	
otal Channels	276	Pixels/Channels	8000	Frames	101	Capacitance Sensor	276
						Plotting Parameter	
	X-Z plane			Y-Z plane		Frame Range (mi	
						Frame Range (ma	
						Reconstruction St	ep 1
						Go to Frame #:	40
						Proc	ess
	0.6 0.8 X-Y planes	1	0.4	0.6 0. Isometric View	.8 1	<<	>>
						Current Frame	45
						Generat	e Video
		1					
						Res	set

Linear Back Projection (LBP)

- Fastest, least accurate method
- One-equation solution:

$$\hat{\mathbf{g}} = \mathbf{S}^T \boldsymbol{\lambda}$$

 \hat{g} = image vector [N terms for N voxels in image]

 λ = normalized capacitance vector [M terms for M plate pairs]

S = sensitivity matrix [M x N]

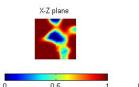
Landweber Iteration

- Slower but more accurate method
- Image vector equation solved a set number of times:

$$\hat{\mathbf{g}}_{k+1} = \hat{\mathbf{g}}_k - \alpha \mathbf{S}^T (\mathbf{S} \hat{\mathbf{g}}_k - \lambda)$$

k = iteration number $\hat{g}_{k} = k^{\text{th}} \text{ image vector}$ $\hat{g}_{0} = \text{initial condition zero vector} = [0,0,0, ...,0]$ $\alpha = \text{relaxation factor (Between 0 and 1)}$ $\lambda = \text{normalized capacitance vector [M terms for M plate pairs]}$ S = sensitivity matrix [M x N]

- More iterations = longer solving time and more accurate image
- Alpha determines step size between iterations



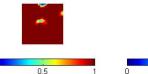
3-D Neural Network Multicriterion Optimization Image Reconstruction Technique (NNMOIRT)

- Slowest, most accurate method
- Finds image vector ĝ that simultaneously minimizes four objective functions:
 - 1. Negative Entropy
 - 2. Least Square Error
 - 3. Smoothness and Small-Peakedness
 - 4. 3D-to-2D Matching
- Enhances quality of 3-D image reconstruction
- Best noise filtering

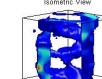
Reconstruction Method Signal-to-Noise Ratio Effects 0 dB SNR

0.5

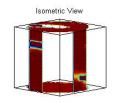
Y-Z plane



0.5

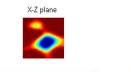


Y-Z plane



X-Z plane

Linear Back Projection MSF = 0.4729


Landweber** MSF = 1.1794 3-D NNMOIRT* MSE = 0.2485

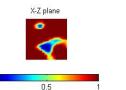
*Alpha = 0.025 $^{+}$ Iterations = 150

Reconstruction Method Signal-to-Noise Ratio Effects

5 dB SNR

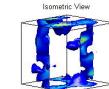
Y-Z plane

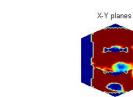
05

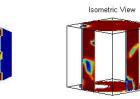

0.5

n

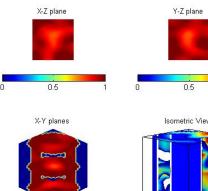
0.5


Y-Z plane




0.5

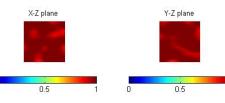
Linear Back Projection MSE = 0.3175

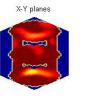

Landweber** MSE = 0.5656

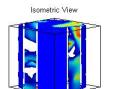
3-D NNMOIRT⁺ MSE = 0.2644

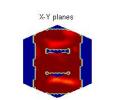
*Alpha = 0.025 *Iterations = 150

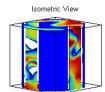
Reconstruction Method Signal-to-Noise Ratio Effects 20 dB SNR



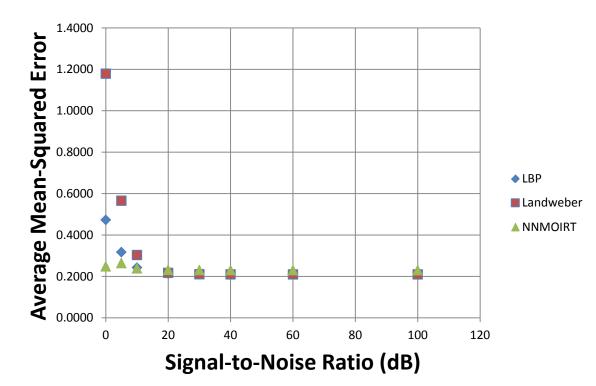



X-Z plane

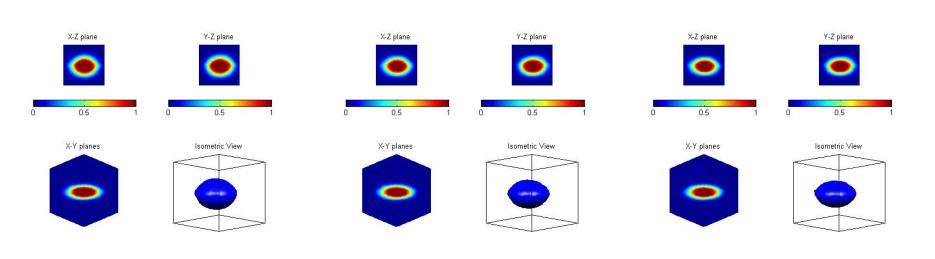




Linear Back Projection MSF = 0.2134


Landweber** MSF = 0.2172 3-D NNMOIRT* MSF = 0.2317

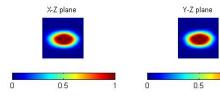
*Alpha = 0.025 $^{+}$ Iterations = 150


Reconstruction Method Signal-to-Noise Ratio Effects

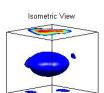
- 3-D NNMOIRT method least affected by low SNRs
- Three methods reach maximum performance at 20 dB
- Standard DAS-2 signalto-noise ratio is 60 dB

Reconstruction Method Landweber Iteration Effects

5 Iterations

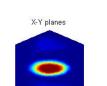

25 Iterations

50 Iterations



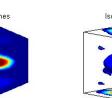
Alpha = 0.025

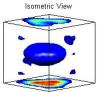
Reconstruction Method Landweber Iteration Effects



0.5

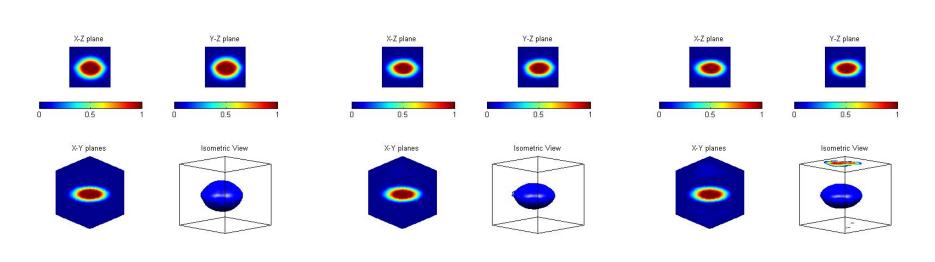
Isometric View




0.5

0.5

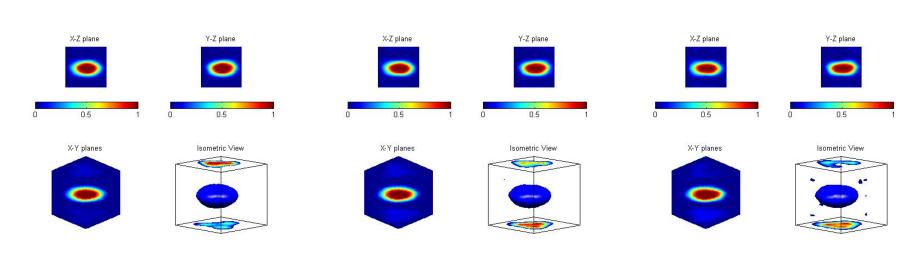
100 Iterations


200 Iterations

500 Iterations

Alpha = 0.025

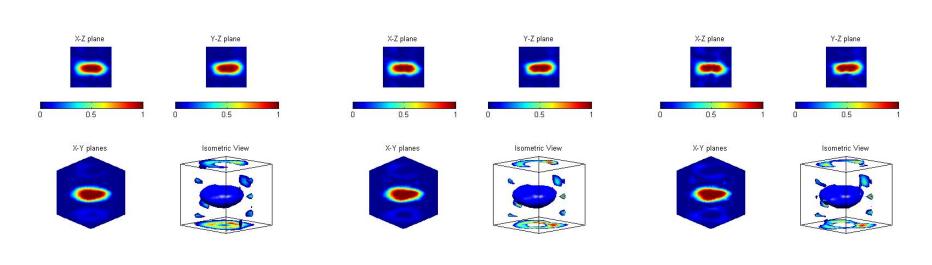
Reconstruction Method Landweber Alpha Effects


Alpha = 0.001

Alpha = 0.010

Alpha = 0.020

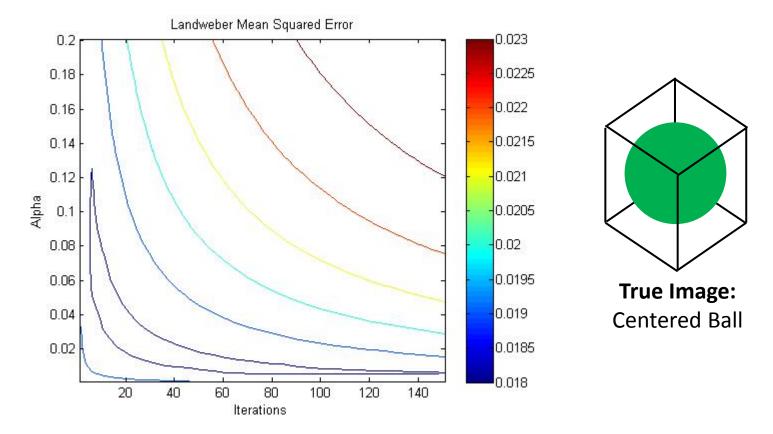
Reconstruction Method Landweber Alpha Effects


Alpha = 0.025

Alpha = 0.050

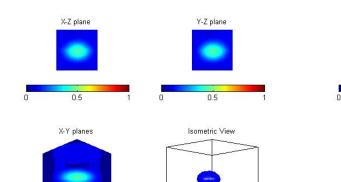
Alpha = 0.100

Reconstruction Method Landweber Alpha Effects

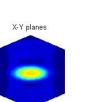

Alpha = 0.250

Alpha = 0.500

Alpha = 1.000


Reconstruction Method Landweber Parameter Effects

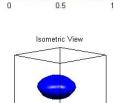
Alpha and iteration count effects on algorithm mean-squared error from ideal image


Reconstruction Method 3-D NNMOIRT Iteration Effects

0.5

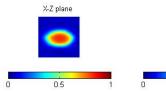
0.5

Isometric View


Π

0.5

X-Y planes

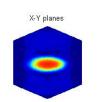


10 Iterations

25 Iterations

Reconstruction Method 3-D NNMOIRT Iteration Effects

Y-Z plane

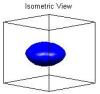

0 0.5

Isometric View

) D 0.5

0.5

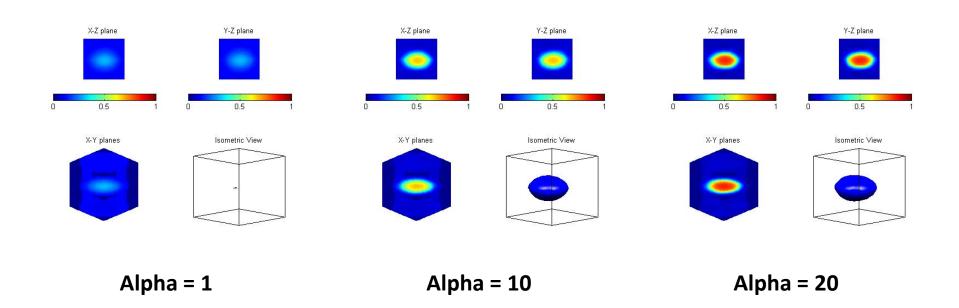
Isometric View



0.5

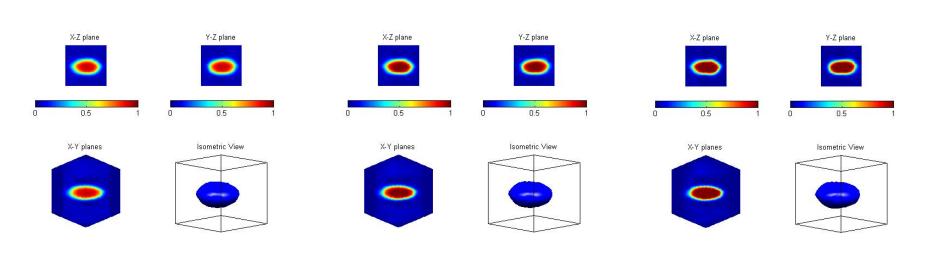
0.5

X-Y planes



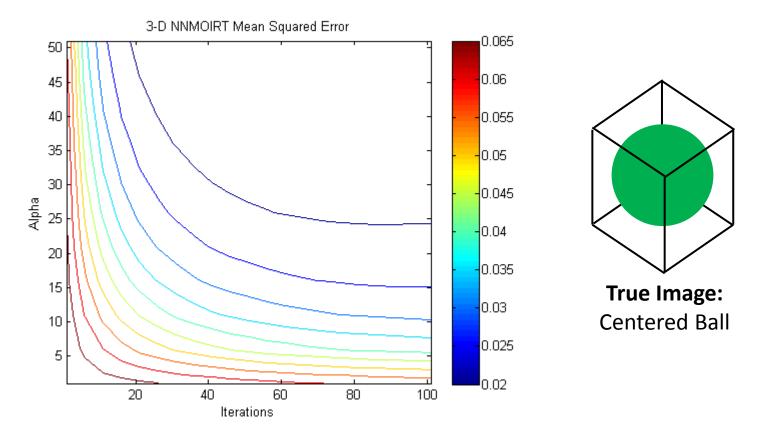
100 Iterations

200 Iterations


Reconstruction Method 3-D NNMOIRT Alpha* Effects

*The 3-D NNMOIRT Alpha parameter is another variable used during image reconstruction that is normally held at 20; it is not usually a controllable variable

Reconstruction Method 3-D NNMOIRT Alpha Effects


Alpha = 30

Alpha = 50

Alpha = 100

Reconstruction Method NNMOIRT Parameter Effects

Alpha and iteration count effects on algorithm mean-squared error from ideal image

Image Reconstruction

Set plotting parameters:

- **Color Bar Min:** Normalized capacitance value that will appear dark blue
- Color Bar Max: Normalized capacitance value that will appear bright red
- Isosurface Value: 3-D isometric view scaling
- All values are between 0 and 1

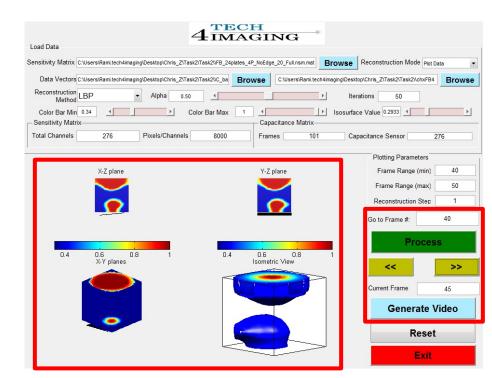
Set plot range:

- Frame Min
- Frame Max
- Reconstruction Step: Number of frames to increment between images

		4	TEC	H GING			
Load Data							1
Sensitivity Matrix C:Wsers	Nami.tech4imaging\l	Desktop\Chris_Z\Task2\Tasl	k2\\FB_24plates_4	P_NoEdge_20_Full.nsi	m.mat Brows	e Reconstruction Mode	Plot Data 🔹
Data Vectors C:\Users	Rami.tech4imaging\	Desktop\Chris_Z\Task2\Tasl	k2\\C_ba Bro	wse C:\Users\F	Rami.tech4imaging\De	esktop\Chris_Z\Task2\Task2\\chx	FB4 Browse
Reconstruction Method LBP	•	Alpha 0.50			Þ	Iterations 50	
Color Bar Min 0.34	4	Color B	lar Max 1	4	Isosu	rface Value 0.2933	
Sensitivity Matrix-				Capacitance M	atrix		
Total Channels	276 F	Pixels/Channels	8000	Frames	101	Capacitance Sensor	276
						Plotting Parameter	rs
	X-Z plane			Y-Z plane		Frame Range (m	in) 40
						Frame Range (ma	ax) 50
						Reconstruction St	ep 1
						Go to Frame #:	40
		-				Proc	ess
	0.6 0.8 X-Y planes	1	0.4	0.6 0.8 Isometric View	1		
						<<	>>
	•					Current Frame	45
						Generat	e Video
-						Res	set
						Ex	tit

Image Reconstruction

Four views of 3-D volume presented

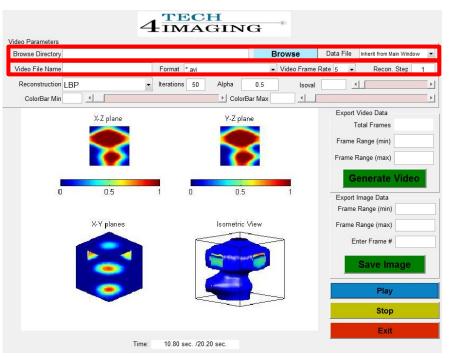

- XZ Plane
- YZ Plane
- Multiple XY-Plane Slices
- 3-D Isosurface View

Move through images

- Jump to specific frame
- Move forwards/backwards through frame range
- Only frames in defined range can be viewed

Generate Video opens new interface

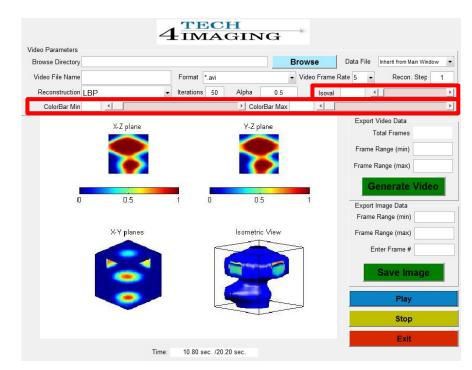
Video Generation Software


TECH

		4	IN	IAC	inc	3				
	deo Parameters Browse Directory					Brows	e D	ata File	Inherit from Main Window	•
	Video File Name		Format	*.avi			o Frame Rate		Recon. Step 1	
	Reconstruction LBP	•	Iterations	50	Alpha	0.5	Isoval			F
		4			ColorBa	r Max				F
	0	X-Z plane	1 0		Y-Z plane 0.5 1 Isometric View			To Frame R Frame Ra Export In Frame R	Video Data Fotal Frames Range (min) Range (max) enerate Video Image Data Range (min) Range (max)	
									er Frame #	
TECH	14	Time:	10.80 s	ec. /20.20	SeC.				EXIL	

NG

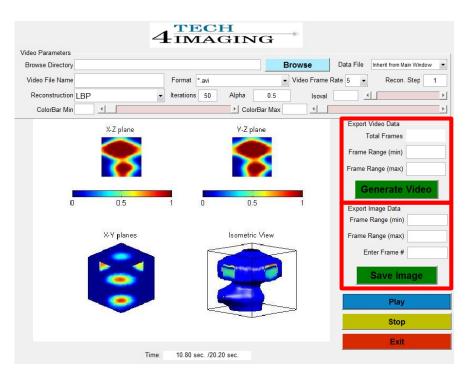
Video Generation


- **1.** Load data to use .mat file containing previously-reconstructed images
- 2. Name video file
- 3. Select video type .avi, .flv, .mp4, or .mpeg
- 4. Choose frame rate 5 to 50 frames per second
- 5. Set reconstruction step number of frames to increment between images

Video Generation

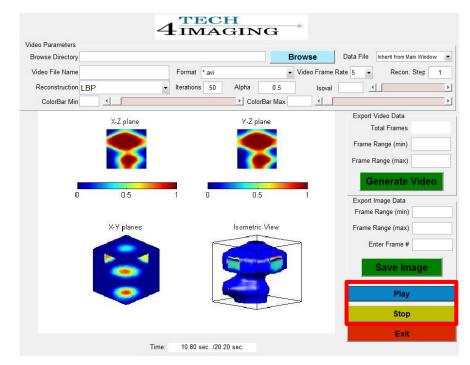
- 6. Set plotting parameters
 - Color Bar Min
 - Color Bar Max
 - Isosurface Value

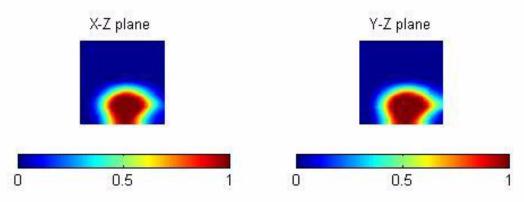
Video Generation


Generate Video

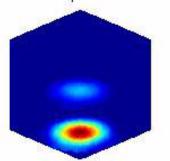
- Set range of frames to include
- All frames included if range not specified
- Press "Generate Video"

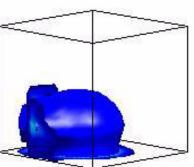
Generate Images


- Set range of frames to generate or
- Enter specific frame number
- Press "Save Image"


Viewing Videos

- 1. Press yellow button (will display "Browse")
- 2. Select video
- 3. Press blue button (will display "Play")
- 4. Play video
 - Blue button now displays "Pause"
 - Yellow button now displays "Stop"
- 5. Stop current video to select another




ECVT Video

X-Y planes

Isometric View

